
Twizzle - A Multi-Purpose Benchmarking
Framework for Semantic Comparisons of

Multimedia Object Pairs

Stephan Escher, Patrick Teufert, Robin Herrmann, and Thorsten Strufe

TU Dresden, Germany
{firstname.lastname}@tu-dresden.de

Abstract. This paper describes Twizzle Benchmarking, a framework
originally developed for evaluating and comparing the performance of
perceptual image hashing algorithms. There are numerous perceptual
hashing approaches with different characteristics in terms of robustness
and sensitivity, which also use different techniques for feature extraction
and distance measurements, making comparison difficult. For this reason,
we have developed Twizzle Benchmarking, which enables comparison and
evaluation regardless of the algorithm, distance calculation, data set or
type of data. Furthermore, Twizzle is not limited to perceptual hashing
approaches, but can be used for a variety of purposes and classification
problems, such as multimedia forensics, face recognition or biometric
authentication.

Keywords: benchmarking · perceptual hashing · multimedia forensics
· face recognition

1 Introduction

The progressive digitalization of all areas of life and the associated accumulation
of large amounts of data require tools that make such amounts of data efficiently
and quickly searchable, comparable and analyzable. In the multimedia area, such
tools extract certain features from a multimedia object that can be used to de-
scribe the object or its content. This feature extraction is used to reduce the
sheer size of multimedia objects, to prevent redundancy and noise, as well as to
be stable against changes such an object undergoes during its lifetime. Working
with extracted features instead of the multimedia object itself allows a faster
and more efficient processing of large amounts of data. However, by reducing
the information to features, the decision whether a multimedia object resembles
another or if it is the content to be identified is no longer unambiguous but
depends on probabilities or thresholds. Thus, the quality of these tools is mea-
sured on the one hand by the robustness of the extracted features to changes
of the multimedia object and on the other hand by their sensitivity to different
multimedia objects.
An example to illustrate could be perceptual image hashing (PIH), an umbrella



2 S. Escher et al.

term for hash functions which produces a short and fix-sized fingerprint out of
an image file, based on the perceptible content, e.g. the structure of the scene.
The goal of these PIH algorithms is to find image duplicates while being robust
to perceptual preserving transformations (PPT), like rotation, compression or
brightness adjustments, as well as sensitive to similar images.
The workflow of a PIH algorithm usually starts with preprocessing, like scaling
[14], ring partition [11] or segmentation [8]. Subsequently, perceptual features
are extracted from the preprocessed image. Examples are methods based on
Wavelet coefficients [12], Fourier-Mellin coefficients [9] or Local Binary Patterns
[2]. Finally the extracted features are often quantized and represented as a vector
of fixed length. In order to examine two images for perceptible similarity, their
generated hashes are subjected to a distance comparison. Fields of application
range from reverse image search, image authentication [10] and digital forensics
[8] up to phishing website detection [4].
So far, there are many different PIH approaches. Each of these algorithms allows
different PPTs, but often solve only one aspect such as an affine transformation
with high performance. The evaluation of these algorithms vary widely, usually
considers only a partial area of robustness and are only compared with algo-
rithms of similar design. In addition, combinations of transformations and the
sensitivity characteristics are rarely taken into account. Existing Benchmark-
ing solutions which try to solve these issues are PHabs [16] and Rihamark [15].
However, for Phabs today neither code nor an exact description of the structure
can be found and is therefore outdated. The developers of Rihamark have al-
ready critically noted this and hence presented their own framework. Rihamark
provides a plugin system and comes with predefined PPTs and PIH algorithms
as well as support for sensitivity evaluation. Nevertheless Rihamark is limited
to PIH algorithms that generate a binary hash and compare them with ham-
ming distances, which means that algorithms with a different structure cannot
be compared. Furthermore its dependent on the data set (only images), difficult
to extend, difficult to apply to large data sets and to deploy on servers with
higher resources.
For those reasons we propose our modern and modular benchmarking framework
Twizzle, with which existing and new PIH algorithms can be easily evaluated
and compared, by remedying the weaknesses of existing benchmarks. Due to
the modular design and the independence of feature extraction, decision making
and the data set, twizzle is not limited to PIH approaches, but can be used for
a variety of similar applications.

2 Twizzle Benchmarking

Facing that every PIH algorithm has its own way of hash representation and
distance calculation we realized that we have to abstract the task to the following
Question: Are two objects (in this case images) the same or not? Therefore we
have designed a benchmarking pipeline in which the algorithms to be compared
have to solve this task independently of their feature extraction and decision



Twizzle Benchmarking Framework 3

Fig. 1. General workflow of Twizzle. (1) Input: Challenge - objects to compare and
ground truth (2) feature extraction (3) decision making (4) Output: list of decisions
(5) Analysis: decisions vs. ground truth

making. The resulting framework is written in python 3 and freely available1

under GPLv3. The whole workflow of the benchmarking pipeline could be seen
in Figure 1.
Overall, Twizzle consists of a “Challenge creator“, the algorithm tests and the
“Analyser“, where the algorithm tests can be further separated into “Wrapping“
the algorithms to be evaluated and the “Test runner“. Each of these parts can be
independently reused in several different pipelines for different algorithms and
different problem cases.

2.1 Challenge Creation

The first step of the benchmarking pipeline represents the creation of a spe-
cific challenge an algorithm has to solve (see Fig. 1 step 1). Twizzle originally
was designed for challenges which have the form of a pairwise comparison of
multimedia objects. I.e. the algorithm has to decide whether the objects or the
content within the objects are the same or not. Thus a data set with comparison
pairs, each consisting of an original object paired with a comparative object, has
to be created. For each pair the expected decision (ground truth) needs to be
specified. I.e. if a pair consists of the same objects the decision should be “True“
(“These are the same objects.“) otherwise “False“.
For PIH-Challenges, object pairs could for example consist of similar but not
same images for a sensitivity challenge, of same but modified images for a ro-
bustness challenge or of both as a practical use case challenge (see List 1.1).

1 github.com/dfd-tud/twizzle



4 S. Escher et al.

From a practical point of view, the first step is to initiate a new instance of Twiz-
zle where a name for the database, in which challenges and results will be saved,
needs to be specified. Furthermore, a list of paths to original objects, a list of
corresponding comparative objects and a Boolean list of ground truth decisions
for each original-comparative pair has to be created. Dimensions of the lists of
original objects, corresponding objects and ground truth decisions need to be the
same. Optionally, additional metadata can be passed as python dictionary, for
example to describe the specific challenge. Finally the created challenge is added
to the database. Thus the challenge is prepared for any number of tests, such
as the evaluation of different algorithms or the testing of different parameters of
an algorithm.

Listing 1.1. Example Challenge Creation

DBPath = ”test.db”
tw = Twizzle(DBPath)
sChallengeName = ”pih challenge”
aOriginals = [”img1.png”, ”img1.jpg”, ”img2.png”]
aComparatives = [”img1 r10.png”, ”img1 r20.png”, ”img1.png”]
aTargetDecisions = [True, True, False]
dicMetadata = { ”transform”: ”rotation” }
tw.add challenge(sChallengeName, aOriginals, aComparatives, aTargetDecisions, dicMetadata)

2.2 Wrapping an Algorithm

Next a wrapper for each algorithm to be evaluated has to be created. Wrappers
need to have at least two input parameters for the original and comparative ob-
jects, which are specified in the created challenge. Additional named arguments
can be passed, like different parameters for the algorithm to be evaluated. The
first step of such a wrapper function is to load the objects linked to in the two
lists. Then, for each object pair, it has to evaluate whether the two objects are
the same or not, which is done via the user-defined algorithm.
An exemplary structure of a wrapper for a user-defined PIH-algorithm could
consist of iterating over each image pair, extracting the features and generating
the perceptual hash for each image (see Fig. 1 step 2). With the user-defined
decision making algorithm, e.g. based on a normalized hamming distance of the
two hashes and a threshold, it is decided if both hashes represent the same image
or not (see Fig. 1 step 3). Finally, the wrapper must return the list of algorithm
decisions for all object pairs (see Fig. 1 step 4) and if desired additional arbitrary
metadata.

Listing 1.2. Example Wrapper

def wrapper(aOriginalImages, aComparativeImages, param1, ...)
for i, sOriginalImage in enumerate(aOriginalImages):

sComparativeImage = aComparativeImages[i]
hashOriginal = algorithm(sOriginalImage, param1)
hashComparative = algorithm(sComparativeImage, param1)
deviation = distance(hashOriginal, hashComparative)
if(deviation <= threshold): bDecision = true
aDecisions.append(bDecision)

return(aDecisions, dictMetadata)



Twizzle Benchmarking Framework 5

2.3 Test Runs

Tests for Twizzle are black box tests. This means, that the internal workings
of an algorithm are not known to Twizzle. All Twizzle expects from the user-
defined algorithm is that it can handle a set of original objects and corresponding
comparative objects and return some kind of decision values, which is done
through the wrapper.
“Test runs“ specifies which algorithm has to solve which challenge and provide
any additional parameters for “Test wrappers“. All decisions made during a
test execution are returned to the Twizzle framework, where it compares the
algorithm decisions with the ground truth decisions specified during “Challenge
creation“ and calculates the TPR, TNR, FPR, FNR, accuracy, precision and F1
score (see Fig. 1 step 5). Additional also user-defined metadata can be returned
by each test, for example the used algorithm parameters. Based on this outputs
an algorithm can be easily compared to others. Tests defined in Twizzle are
executed in parallel with a user-defined number of threads and can therefore
also be set up on a cluster.

Listing 1.3. Example Test Run

oRunner.run test async(”pih challenge”, wrapper, {”param1”:param1})

2.4 Analyse Results

Twizzle also provides an Analysis component, which will collect and merge all
tests and the corresponding challenges and returns a pandas dataframe [6]. This
dataframe contains the test results, evaluation metrics per test and all meta-
data added during “Challenge creation“ and running the actual test. Compar-
ing tested algorithms can be easily done due to Twizzle abstracting the binary
classification task and generating typical classification evaluation metrics. The
evaluation metrics provided by Twizzle include custom metrics, challenge name
as well as the metrics mentioned above.

2.5 Twizzle Features

Overall Twizzle accepts any user-defined feature extraction and decision making
algorithms, independent of their type and functionality and enables the compar-
ison of them. Further, Twizzle enables the creation of user-defined Challenges,
consisting of user-defined data sets independent of their data type, with which
the algorithms can be evaluated. Although Twizzle was developed for image
comparisons, it can therefore be used for any pairwise comparison task, e.g. of
text documents. Thereby Tests and Challenges are independent of each other,
i.e. each created Challenge can be used for other Tests, as well as each created
algorithm wrapper can be tested for any challenge. Twizzle represents the test
data and evaluation metrics for analysis of each test and simplifies the compari-
son of the results. Further tests and analysis can be extended with user-defined
meta data. Finally test runs could be executed easily in parallel.



6 S. Escher et al.

3 Use Cases

Twizzle’s scope is not limited to perceptual hashing approaches, but can be used
for a variety of purposes. This section contains some examples that describe the
applicability of Twizzle to different use cases. Other use cases which are not
mentioned here could be for example object detection or biometric authentica-
tion.

3.1 Multimedia Forensics

From a forensic point of view it is important to be able to determine the source
device (e.g. a printer) of an unknown multimedia file (e.g. print-out) or at least to
compare multimedia data with respect to their source device, e.g. for the analysis
of blackmail letters. Forensic methods try to solve this problem by extracting so-
called intrinsic signatures out of the multimedia data. These are artifacts caused
by the source device during the creation of the multimedia file. Depending on
the stability and distinguishability of the intrinsic signature, it can then be used
as a fingerprint for the corresponding source device, device model or type.
In printer forensics for example intrinsic signatures like geometrical distortions of
text [13] and image [1] elements, the texture and structure of printed characters
[3] or the halftoning structure [5] could be used to identify the source printer
model. All of these fingerprints have different properties regarding robustness
(influences such as type of paper) and sensitivity (discriminating a bunch of
printers). Furthermore their exist a lot of various algorithms which try to ex-
tract these signatures in different ways and even decide with different decision
making algorithms (e.g. classification, euclidian distance or correlation with a
reference pattern). Just like the perceptual hashing approaches, all of this meth-
ods use their own curtailed evaluations concerning sensitivity, robustness and
data sets. However such different signatures, extraction algorithms, their set-
tings as well as the combination of such methods could easily be evaluated and
compared with Twizzle.
For the challenge of comparing two print-outs based on their signature similar-
ity, the benchmarking pipeline looks exactly like for a PIH approach. Therefore
the data set could consists of scanned print-outs from same and different printer
devices with different robustness parameters (like different fonts, print settings
or paper types), like:

Table 1. Example challenge for a printer forensic algorithm

original [”printer1 font2.png”, ”printer2.jpg”]

comparative [”printer1 font1.jpg”, ”printer1.png”]

ground truth [True, False]

After extracting the fingerprint of original and comparative print-out, the de-
cision algorithm used decides whether they are from the same source device



Twizzle Benchmarking Framework 7

or not. After the test runs, decisions and ground truth are compared whereby
tested algorithms can be compared and evaluated, independent of used signa-
tures, extraction algorithm or decision making. For a source printer classification
challenge, Twizzle could also be used while be prepared as described in the next
use case.

3.2 Face Recognition

Another use case could be face recognition. Face recognition is the task of iden-
tifying the person depicted in an image. Various biometric features (facial fea-
tures) are extracted from the images, which often vary for different algorithms.
These face features should ideally be robust to changes in image characteristics
(brightness, contrast, resolution, aspect ratio etc.) and physical changes (beard,
glasses, pose, hairstyle, scars, etc.) [7, 17]. At the same time they should be sensi-
tive, i.e. characteristics of different persons should be distinguishable in any case.
We want to give an overview of how Twizzle can be used for the classification
problem ”Two pictures are given, is the same person shown?”.

Challenge Creation For a data set with face images and corresponding personal
labels, the creation of challenges can be done as follows. A “Challenge creation“
for a classification problem, e.g. using machine learning, would be done by split-
ting the data set into train and test data and then training the machine learning
model on the train data. The test data can then be used to generate original-
comparison object pairs, and the specification of the ground truth using already
labeled images can be done simply by comparing the generated image pairs and
the corresponding labels. If for a pair of images both images have the same la-
bel, the algorithm to be tested should return true, otherwise false. The generated
pairs and the corresponding ground truths are stored for this challenge.

Test Wrapper The test wrapping for our scenario can be done by generating
labels for each image pair and comparing these labels. For each image in a pair,
the label is predicted using the trained model. The decision is made by comparing
the predicted image labels and adding the decision to the total decisions made,
which the test returns at the end.

Test Run The test runner itself simply specifies which “Test Wrapper“ is used
and in a machine learning scenario provides the test with the trained model as
additional parameter, since in this case the model is needed by the algorithm to
be tested.

Analysis The analysis is individually necessary and is determined by the self-
defined requirements for a ”good” algorithm. When developing a face verification
system for security, a ”good” algorithm may need to have a very low false positive
rate, while a higher false negative rate is acceptable. On the other hand, an
image retrieval task could be the opposite case, where a ”good” algorithm finds
all images for a person and delivers false positive results rather than missing an
image.



8 S. Escher et al.

4 Conclusion

We have developed Twizzle, a multi-purpose benchmarking framework for vari-
ous comparison tasks, originally designed to compare algorithms that determine
whether multimedia objects are the same or not. Twizzle provides an easily ex-
tensible architecture to run and analyze many tests in parallel and for different
problem scenarios. Twizzle users are provided with many important evaluation
metrics for each test, making it easy to compare different algorithms for the
same task and optimize algorithms for specific score metrics. Due to the high
reusability of the Twizzle components, the algorithms can be quickly evaluated
on multiple data sets by changing only the underlying challenge without having
to develop a completely new pipelining and testing process.

References

1. Bulan, O., Mao, J., Sharma, G.: Geometric distortion signatures for printer iden-
tification (2009)

2. Davarzani, R., Mozaffari, S., Yaghmaie, K.: Perceptual image hashing using center-
symmetric local binary patterns (2016)

3. Ferreira, A., Navarro, L.C., Pinheiro, G., Santos, J.A.d., Rocha, A.: Laser printer
attribution: Exploring new features and beyond (2015)

4. Joshua S., W., Jeanna N., M., John L., S.: A method for the automated detection
phishing websites through both site characteristics and image analysis (2012)

5. Kim, D.G., Lee, H.K.: Colour laser printer identification using halftone texture
fingerprint (2015)

6. McKinney, W.: Data structures for statistical computing in python (2010)
7. Sharif, M., Naz, F., Yasmin, M., Shahid, M.A., Rehman, A.: Face recognition: A

survey. (2017)
8. Steinebach, M., Liu, H., Yannikos, Y.: Efficient cropping-resistant robust image

hashing (2014)
9. Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing (2006)

10. Tabatabaei, S.A.H., Ur-Rehman, O., Zivic, N., Ruland, C.: Secure and robust two-
phase image authentication (2015)

11. Tang, Z., Zhang, X., Li, X., Zhang, S.: Robust image hashing with ring partition
and invariant vector distance (2016)

12. Venkatesan, R., Koon, S.M., Jakubowski, M.H., Moulin, P.: Robust image hashing
(2000)

13. Wu, Y., Kong, X., You, X., Guo, Y.: Printer forensics based on page document’s
geometric distortion. (2009)

14. Yang, B., Gu, F., Niu, X.: Block mean value based image perceptual hashing (2006)
15. Zauner, C., Steinebach, M., Hermann, E.: Rihamark: perceptual image hash bench-

marking (2011)
16. Zhang, H., Schmucker, M., Niu, X.: The Design and Application of PHABS: A

Novel Benchmark Platform for Perceptual Hashing Algorithms (2007)
17. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature

survey (2003)


