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Abstract 
 

Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay 

global eradication. Vaccinating decisions exemplify a complex, coupled system where 

vaccinating behavior and disease dynamics influence one another. Such systems often exhibit 

critical phenomena--special dynamics close to a tipping point leading to a new dynamical 

regime.  For instance, critical slowing down (declining rate of recovery from small perturbations) 

may emerge as a tipping point is approached.  Here, we collected and geocoded tweets about 

measles-mumps-rubella vaccine and classified their sentiment using machine learning 

algorithms. We also extracted data on measles-related Google searches. We find critical slowing 

down in the data at the level of California and the United States in the years before and after the 

2014-15 Disneyland, California measles outbreak. Critical slowing down starts growing 

appreciably several years before the Disneyland outbreak as vaccine uptake declines and the 

population approaches the tipping point. However, due to the adaptive nature of coupled 

behavior-disease systems, the population responds to the outbreak by moving away from the 

tipping point, causing “critical speeding up” whereby resilience to perturbations increases. A 

mathematical model of measles transmission and vaccine sentiment predicts the same qualitative 

patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large 

epidemics. These results support the hypothesis that population vaccinating behavior near the 

disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect 

these patterns in digital social data might help us identify populations at heightened risk of 

widespread vaccine refusal.  
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Significance Statement 
 

Complex adaptive systems exhibit characteristic dynamics near tipping points such as critical 

slowing down--declining resilience to perturbations. We studied Twitter and Google search data 

about measles from California and the United States before and after the 2014-15 Disneyland, 

California measles outbreak. We find critical slowing down starting a few years before the 

outbreak.  However, population response to the outbreak causes resilience to increase afterwards. 

A mathematical model of measles transmission and population vaccine sentiment predicts the 

same patterns. Crucially, critical slowing down begins long before a system actually reaches a 

tipping point. Thus, it may be possible to develop analytical tools to detect populations at 

heightened risk of a future episode of widespread vaccine refusal. 
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Introduction 
 

 

In recent decades, vaccine refusal has contributed to the resurgence of measles and pertussis and 

significantly delayed the global eradication of polio (1, 2).  For instance, the 2014-15 measles 

outbreak in Disneyland, California was preceded by declining kindergarten measles-mumps-

rubella (MMR) vaccine coverage in California between 2010 and 2014 (Fig. 1a) (3).  Vaccine 

compliance at school entry fell to 70%-90% in many cases and sometimes even lower in some 

Los Angeles schools (3).  Inadequate vaccine compliance appears to have played a role in the 

outbreak (4), contributing to a significant peak in California measles case notifications in late 

2014 and early 2015 (Fig. 1a) (5).  The outbreak garnered significant public interest, causing a 

large spike in both United States (US)-geocoded tweets regarding measles (Fig. 1b) and Google 

Internet searches in California for “MMR” and “measles” (Fig. 1c) as reports of cases began to 

flow in.  Amidst the resulting public outcry, the California legislature began taking steps to 

disallow non-medical exemptions (6–8), although statewide MMR vaccine uptake began to 

recover before these policy changes went into effect (Fig. 1a) (3).  

The changes in vaccinating behavior before and after the Disneyland measles outbreak 

are consistent with a coupled behavior-disease dynamic in which vaccinating decisions and 

disease dynamics influence one another in a nonlinear feedback loop. The mathematical 

modeling of coupled behavior-disease dynamics is growing rapidly (9–12) although relatively 

little attention has been devoted to critical phenomena in such systems. The theory of critical 

transitions (tipping points) and their early warning signals may help public health officials 

anticipate when and where resistance to vaccination might develop and intensify. A critical 

transition occurs when a complex system shifts abruptly to a strongly contrasting state as an 

external driver moves the system past a bifurcation point (13, 14). These shifts may exhibit 

characteristic early warning signals as a consequence of critical slowing down (CSD), in which a 

declining rate of recovery from small perturbations causes dynamics to become more variable. 

Critical slowing down can be detected by changes in indicators such the variance, lag-1 

autocorrelation, and coefficient of variation in high-resolution time series of state variables (13, 

14).   
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Social norms tend to reinforce currently accepted behavior and thus promote status quo 

practices in populations (15–17).  However, individuals also make vaccinating decisions based 

on the perceived risks of the vaccine and the diseases they prevent (15).  Here, we hypothesize 

that coupled behavior-disease systems exhibit a tipping point arising from interactions between 

social norms, perceived vaccine risk, and perceived disease risks.  Specifically, we investigate 

the effects of risk perception in terms of the ratio of the magnitude of perceived vaccine risk to 

the magnitude of perceived risk of disease complications (we will call this “relative vaccine risk” 

for short).  Rising public concern about potential vaccine complications can cause the relative 

vaccine risk to grow to a tipping point where social norms in support of a status quo of high 

vaccine acceptance can no longer prevent a drop in pro-vaccine sentiment. If the population 

moves beyond this tipping point, a decline in pro-vaccine sentiment causes fewer people to seek 

vaccination and herd immunity breaks down, enabling outbreaks of various sizes.  But before the 

tipping point is reached, critical slowing down causes the variance, lag-1 autocorrelation and 

coefficient of variation of time series of population sentiment toward the vaccine to increase. 

Importantly, the increase in these three indicators should be noticeable long before any 

significant change is obvious in the raw time series of population sentiment toward the vaccine. 

In other words, they provide an early warning signal of a potential tipping point.  

However, coupled behavior-disease systems are complex adaptive systems, which 

introduces an important twist to our hypothesis. The relative vaccine risk is not simply an 

external driver pushing the system past a tipping point. It also responds to changes in infection 

prevalence. When an outbreak occurs, the relative vaccine risk drops. Hence, a critical transition 

can be avoided if the population responds to the small outbreaks that begin to occur near a 

tipping point (18). We hypothesize that these dynamics could lead to critical slowing down 

before the outbreak followed by “critical speeding up” (improving resilience to perturbations) 

after the outbreak as the population recedes from the tipping point. Although critical slowing 

down in a time series of population vaccine sentiment will not necessarily predict whether the 

population will pull back from the critical transition or go through the transition, it can at least 

tell us that the population is getting dangerously close to a tipping point.  

In this article, we report evidence for critical slowing down in sentiment-classified tweets 

and in Google searches about measles before the Disneyland measles outbreak, followed by 

critical speeding up afterwards. These empirical digital signals show patterns that match those 
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exhibited by a mathematical model of the coupled dynamics of measles transmission and vaccine 

sentiment that has been previously tested against case notification and vaccine uptake data for 

measles and pertussis (19–21).  Hence, these digital signals could be used as an early warning 

signal of tipping points in coupled behavior-disease systems.  

 

Results 
 

Model. The mathematical model captures the interplay between disease dynamics, social 

learning, social norms and perceived risk:  
!"
!"
= 𝜇(1− 𝑥)− 𝜇𝑆 − 𝛽𝑆𝐼,     [1] 

           !"
!"
= −𝜇𝐼 + 𝛽𝑆𝐼 − 𝛾𝐼,            [2] 

!"
!"
= 𝜅𝑥(1− 𝑥)(−𝜔(𝑡)+ 𝐼(𝑡)+ 𝛿(2𝑥 − 1)),   [3] 

where S is the proportion of susceptible individuals; I is the proportion of infected individuals, x 

is the proportion of individuals with pro-vaccine sentiment; µ is the per capita birth and death 

rate, β is the transmission rate, γ is the rate of recovery from infection, κ is the social learning 

rate, δ is the strength of social norms, and ω(t) is the relative vaccine risk. We note that Eq. [3] 

has been rescaled and that the proportion of recovered individuals R is simply 1-S-I.  From Eq. 

[1], vaccine uptake is given by x and thus all pro-vaccine individuals choose vaccination, while 

the remainder 1-x of anti-vaccinators avoid it.  Pro-vaccine sentiment becomes more widespread 

when infection prevalence I(t) is higher or when vaccine risk ω(t) is lower.  Social norms 

reinforce whichever sentiment--pro- or anti-vaccine--is more common.   

We chose a simple model because critical slowing down only requires that the eigenvalue 

go to zero at the bifurcation point. This is universal to many types of local bifurcations in both 

simple and complex models (14).  Hence, a broad class of more complicated models should 

predict the same patterns.  (For instance, it is possible to show that including a third category of 

individuals with neutral sentiment also exhibits critical slowing down).  Additional details about 

model derivation, parameterization and simulation appear in SI Appendix: Section S3.  

In the case of fixed vaccine risk, ω(t)=ω, the model has multiple stable equilibria (19).  

The equilibrium (S, I, x)=(0,0,1) is of particular interest because it corresponds to a disease-free 

state with full vaccine uptake that is stable when relative vaccine risk is less than the strength of 
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social norms (ω<δ). However, as ω increases past δ the equilibrium is destabilized through a 

critical transition at ω=δ  and the population converges to a state of endemic infection and no 

vaccine uptake (Fig. 2a). At other parameter values, a drop to endemic infection and intermediate 

vaccine coverage is also possible.  

To study critical slowing down, the model was converted to a stochastic model by 

including an additive Wiener process (SI Appendix: Section S3). When ω(t) increases linearly 

until it crosses the tipping point (Fig. 2b), vaccine uptake collapses and an epidemic occurs (Fig. 

2c). But before this happens, the variance, lag-1 autocorrelation and coefficient of variation of 

the time series of pro-vaccine sentiment (x) increase as the critical transition is approached (Fig. 

2d). The increase begins long before any significant change is obvious in the raw x time series 

and hence they provide an early warning signal of the critical transition.  We will show later in 

the Results section that the proportion of individuals with anti-vaccine sentiment (1-x) also 

exhibits critical slowing down.  

 

Approach. In the next subsection, we compare the temporal evolution of the three indicators in 

digital social data before and after the Disneyland measles outbreak to the model predictions 

when the relative vaccine risk ω(t) increases linearly to the tipping point at ω=δ  and then 

decreases linearly back to a baseline level (see SI Appendix: Section S3)--this is intended as a 

first approximation to how critical slowing down (CSD) might occur before the outbreak, 

followed by critical speeding up after.  

We treated CSD in the time series of number of tweets with pro-vaccine (respectively, 

anti-vaccine) sentiment as a proxy for CSD in the time series of the proportion of individuals 

with pro-vaccine (respectively, anti-vaccine) sentiment in the general population (x and 1-x; note 

that x is also vaccine uptake in the model). This is supported by research showing a correlation 

between sentiment of tweets on influenza vaccine and actual influenza vaccine uptake (22), and 

between discussion of individuals’ health status in social media and their actual health status 

(23). We also show that CSD in total tweets of a given sentiment is a good proxy for CSD in 

population vaccine sentiment and uptake in a broad class of expanded models in which a critical 

transition in abundance of individuals with pro- or anti-vaccine sentiment drives an observable 

change in the number of pro- or anti-vaccine tweets in online social media (SI Appendix: Section 

S6).  
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We analyzed three empirical data sets. The US GPS data set included measles-related 

tweets with latitude and longitude coordinates in the US. The much larger California and US 

Location Field data sets included measles-related tweets from users indicating a California or US 

location in their user location field. We used a machine learning algorithm to classify tweet 

sentiment in the Location Field data sets into pro-vaccine, vaccine, or other. The US GPS data 

set sentiment was classified using Amazon Mechanical Turk (see Methods).  

 

Pro-vaccine tweets. The time series of pro-vaccine tweets shows evidence for CSD in the years 

before the Disneyland outbreak (Fig. 3). In the California Location Field data set, we observe 

that the variance (Fig. 3c), lag-1 autocorrelation (AC) (Fig. 3g) and coefficient of variation (Fig. 

3k) all increase significantly before the outbreak. The increase in these indicators begins well 

before the rolling window used for local temporal averaging reaches the time of the outbreak. 

Hence, the analysis reveals a long-term trend in indicators beginning several years before the 

outbreak. We interpret this trend as the system’s growing variability as the population 

approaches a critical transition to widespread reductions in vaccine uptake (Fig. 2).  

After the outbreak, however, California responds by receding from the critical transition, 

rather than being pushed past it to a new dynamical regime of endemic infection and 

significantly reduced vaccine uptake (as occurred for whole cell pertussis vaccination in the 

United Kingdom, for instance (21)).  This is indicated by a decline in all three indicators after the 

outbreak (Fig. 3 c,g,k), as well as by a reversal of the declining trend in vaccine coverage (Fig. 

1c).  The system’s resilience to perturbations improves as the population recedes from the 

tipping point.  

The decrease in the indicators after the outbreak is also a useful test of whether 

underlying changes in the total number of Twitter users over the study time window could be 

driving the observed increase in the indicators before the outbreak. If this were the case, we 

would not expect to see a decline in the indicators or the number of raw tweets after the 

outbreak.  

The patterns are similar but not as consistent for the data sets from the much larger US 

population, as expected. Variance increases for both US GPS and US Location Field data sets 

(Fig. 3a,b), but lag-1 AC increases only for the US GPS data set (Fig. 3e), and the coefficient of 

variance increases only for the US Location Field data set (Fig. 3j). After the outbreak, the same 
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indicators in the same data sets decline (Fig. 3a,b,e,j) while the indicator increases in two of the 

subpanels (Fig. 3i,f).  

The mathematical model shows the same general trends, including a stronger signal for 

variance than for lag-1 AC or coefficient of variation. The three indicators grow and then decline 

on average in a pattern similar to that observed in the data, as the perceived relative risk ω(t) 

approaches and then recedes from the tipping point (Fig. 3d,h,i).  The relative magnitude of 

change in the indicators is also similar in model and data: changes in variance are largest, 

followed by coefficient of variation, followed in turn by lag-1 AC.  In the model, only 66%, 63% 

and 67% of stochastic realizations exhibit an increase followed by a decrease in the Kendall tau 

coefficient for variance, lag-1 AC, and coefficient of variation, respectively.  

 

Anti-vaccine tweets. Similar trends are observed for anti-vaccine tweets (Fig. 4), with a 

surprising exception. As before, the increasing and then decreasing trend in variance is strongest 

in both model and the three data sets (Fig. 4a-d).  However, using Kendall tau values as the 

criterion, lag-1 AC increases before the outbreak in only one of the three datasets (the US GPS 

data set, Fig. 4e) and decreases after the outbreak in only two of the data sets (Fig. 4e,g). Trends 

in lag-1 AC in the model are correspondingly weak, with many stochastic realizations failing to 

exhibit the increase and decrease (Fig. 4h).  

Surprisingly, the coefficient of variation decreases consistently over most of the pre-

outbreak time period in all three datasets (Fig. 4i-k). The model also exhibits this inversion (Fig. 

4l), with a decrease in the indicator as the tipping point is approached and an increase as the 

population recedes from it, on average and in 59% of the stochastic realizations (Fig. 4l).  Hence 

the data sets show a post-outbreak decrease as well, and not all pre-outbreak Kendall tau values 

are negative at the 5% significance level if the time just before the Disneyland outbreak is 

included. The decline in the coefficient of variation before the tipping point for anti-vaccine but 

not pro-vaccine sentiment occurs because the statistic divides the standard deviation by the 

mean. The mean number of non-vaccinators increases from a small value as the tipping point is 

approached, while the mean number of vaccinators decreases.  

 

Google Trends.  Google Trends (GT) is increasingly used in social science and behavioral 

research (24) and the study of infectious diseases (25, 26). Our search terms did not permit an 
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analysis of sentiment, but previous research indicates that salient and controversial issues 

generate higher search volumes (27–29), including a study finding a significant inverse 

correlation between MMR vaccination coverage and Internet search activity, tweets and 

Facebook posts (28). If we assume salient and controversial issues are ones on which population 

opinion is more divided, we can study critical slowing down in the GT Internet search index 

concerning measles-related searches.  These data are also consistent with critical dynamics near a 

tipping point. The GT data at the national and state levels generally show the same pattern as the 

Twitter data, with a rise in indicators before the outbreak and a decline afterward (Fig. 5).  

Trends are stronger at state than national levels, and for “MMR” rather than “measles” searches, 

which may reflect the greater volume of GT data on “MMR” than “measles” (Fig. 1b).   

 

Sensitivity Analyses.  We generated Figs. 3 and 4 using weekly instead of daily bins. For pro-

vaccine tweets (SI Appendix Fig. S1), the variance always increases and then decreases, similar 

to the daily data. Lag-1 AC shows no trend, or tends to decline before the tipping point. 

However, lag-1 AC measures changes in memory and this is to be expected in a system where 

memory is short-lived: the life span of a typical online social media news item is less than 24 

hours (30), suggesting daily or sub-daily granularity may be required to detect changes in lag-1 

AC.  The coefficient of variation exhibits a statistically significant increase and decrease before 

and after the outbreak. Most of these patterns are repeated in the analysis of anti-vaccine tweets 

using weekly bins (SI Appendix Fig. S2). Results were also qualitatively unchanged when 

changing the rolling window width used for temporal averaging (SI Appendix Fig. S3-S11).  

We analyzed an extended model that includes seasonal variation in the transmission rate 

and an Erlang-distributed infectious period, both of which are known to influence disease 

dynamics (31, 32). We found that the indicator trends were unaffected (SI Appendix Fig. S12).  

Through a probabilistic sensitivity analysis we found that results are qualitatively unchanged 

across a broad range of parameter values (SI Appendix Fig. S13).  To study when happens when 

the relative vaccine risk responds to infection incidence, we simulated a variant model where 

ω(t) = a + bI(t). This variant exhibited growth and decline in the indicators before and after 

outbreaks, similar to Figs. 3-5 (SI Appendix Fig. S14-16). To rule out that the observed increase 

and decrease in the indicators can also happen around ordinary (non-critical) outbreaks we 
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simulated the model at a fixed value of ω far from the critical point.  We found that all indicators 

were flat both before and after non-critical outbreaks (SI Appendix Fig. S17).  

 

Discussion 

 
This article presents evidence that coupled behavior-disease dynamics near the disease 

elimination threshold is a critical phenomenon. We analyzed tweets and Google searches and 

showed how the patterns in the empirical data matched those exhibited by a mathematical model 

of coupled dynamics of measles transmission and vaccine sentiment and uptake.  The three 

indicators--variance, lag-1 autocorrelation, and coefficient of variance--tended to increase before 

the Disneyland outbreak due to critical slowing down, and then decrease after the outbreak due 

to critical speeding up (with the unexpected exception of the coefficient of variation in anti-

vaccinators where the trend was inverted). Our model predicts the same trends in a population 

that approaches but then recedes from a tipping point.  

The variance indicator showed the most robust trends. However, the coefficient of 

variation has the advantage that it inherently adjusts for changes in the mean number of tweets, 

and therefore does not require further processing of the data through computing a residual time 

series, as required for variance and lag-1 autocorrelation. The lag-1 autocorrelation tests for 

changes in system memory (13).  This indicator often--but not always--showed the expected 

trends in our data, and trends were not as strong under weekly binning. We speculate this is 

either because memory is too short-lived in online social media for changes to be detected in data 

with daily or weekly granularity, or due to the presence of higher-order autoregressive processes 

that cannot be detected by lag-1 autocorrelation (33, 34).   

The Disneyland outbreak was small and the response in population vaccine uptake rapid 

compared to other episodes of vaccine refusal where populations appear to have crossed a 

threshold into a regime of endemic infection and significantly reduced population-wide vaccine 

coverage.  This latter scenario occurred for MMR vaccine in England & Wales in the 1990s and 

2000s (80% minimum coverage) (21); whole cell pertussis vaccine in England & Wales in the 

1970s (30% minimum coverage) (21); and oral polio vaccine in northern Nigeria in 2003-2004 

(1).  In recent years, measles outbreaks larger than the Disneyland outbreak have occurred in 
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many under-vaccinated European populations (35). The social media response to the Disneyland 

outbreak was enormous considering the relatively small size of the outbreak. We speculate this 

was because the outbreak was the largest in California in many years and it started in a major 

tourist destination.  

A limitation of our model is that it does not account for spatial clustering. This is a key 

aspect given the presence of clusters of non-vaccinators during the Disneyland measles outbreak 

(3) and it presents an opportunity for further research given the importance of networks in both 

infection transmission and strategic interactions (36, 37). The growth of clusters of non-

vaccinators is not necessarily a competing hypothesis but rather could represent the spatial 

manifestation of critical dynamics. Spatially explicit models of behavioral dynamics in related 

systems develop clusters of individuals with homogeneous opinions as the population starts to 

“bubble” near a critical phase transition (38).  Critical slowing down near a phase transition can 

manifest in similar ways in both spatial and temporal indicators because the underlying process 

is similar.  Hence, the growing clusters of unvaccinated individuals observed before the 

Disneyland measles outbreak may signify bubbling near a critical phase transition. This 

hypothesis could be tested through further research on critical transitions in social networks of 

Twitter users. We also note that spatio-temporal analysis may take advantage of different and 

potentially better indicators than purely temporal analysis (39).  More research is needed to 

better understand the informational content of the indicators in spatially structured populations 

and thereby distinguish qualitatively different outcomes, such as a quick and effective population 

response versus a protracted period of reduced vaccine coverage and endemic infection. Such 

analysis could incorporate vaccine uptake data if it has good spatial and temporal resolution (3).  

A second limitation is our use of critical slowing down in the number of sentiment-

classified tweets as a proxy for critical slowing down in vaccine sentiment and uptake in the 

general population. This assumption could be relaxed by using more detailed models that include 

a submodel for online social media activity that accounts for how different users generate 

differing numbers of tweets and how online social media activity interacts with social processes 

in the general population.  

Our empirical results are largely consistent with our model predictions but cannot 

definitively establish causality. Future research could evaluate out-of-sample model predictions 

and consider the relationship between contemporaneous indicators of vaccine sentiment, such as 
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tweets and search data, and observed vaccine uptake. It would also be valuable to consider other 

events that might affect sentiment dynamics near tipping points and to evaluate whether the 

significant population response to the Disneyland outbreak depended on its extensive media 

coverage.  

Still, these results suggest that population vaccinating behavior near the elimination 

threshold can be characterized as a critical phenomenon near a tipping point in a coupled 

behavior-disease system. Our findings highlight the value of using digital social data to identify 

early warning signals of critical dynamics in adaptive behavior-disease systems and socio-

ecological systems more generally (18). They also demonstrate the value of using dynamical 

systems theory in data science. The theory of critical phenomena in complex systems may shed 

light on other study systems represented in very large social media data sets.   

 

Methods  

 
Twitter data. For the US GPS data set we obtained 27,906 measles-related tweets from March 

2, 2011, to October 9, 2016, with GPS coordinates in the US. We used Amazon Mechanical Turk 

to classify the sentiment of these tweets into 10,926 “pro-vaccine”, 2,136 “anti-vaccine”, and 

14,844 “other” categories.  A tweet was defined as “pro-vaccine” (respectively, “anti-vaccine”) 

if the tweet content suggested the tweeter had a positive (respectively, negative) sentiment 

towards vaccines. This included any information about their feelings or opinions toward vaccines 

or the diseases they prevent.  A tweet was placed in “other” if it was neither pro- nor anti-

vaccine, for instance because it was irrelevant, ambiguous, or if the sentiment of the tweeter 

could not be clearly ascertained. Baseline analysis used daily bins.  Additional details appear in 

SI Appendix: Sections S2 and S5.  Over the same time period, 11,685,264 tweets had 

information in the user location field. To generate the Location Field data sets these tweets were 

geotagged using a modified version of the Geodict library and classified into “pro-vaccine”, 

“anti-vaccine” and “other” using a linear support vector machine.  The classifier obtained 

precision scores of 80%, 90%, 79% and recall scores of 83%, 82%, 82% for anti-vaccine, other, 

and pro-vaccine tweets respectively (F1 scores: 81%, 86%, 80%).  The process identified 

660,477 anti-vaccine, 883,570 pro-vaccine, and 483,636 other tweets in the US data set, and 

101,683 anti-vaccine, 112,741 pro-vaccine, and 59,030 other tweets in the California data set. 
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Baseline analysis used daily bins. Additional details including references appear in SI Appendix: 

Section S2 and S5. Data are available in SI Datasets S1-S3.  

 

Google Trends data extraction.  We analyzed GT search data for January 2011 to December 

2015 using the gtrendsR (40) package. Unfortunately, the longest range of day-level query data 

Google provides is three months, which generates results in the arbitrary units of GT data that 

are not comparable between searches. (GT returns an estimate of the relative prevalence of 

searches matching the query for the time period and geography in question when the prevalence 

of the search term or terms exceeds some unspecified threshold.) As a result, we ran multiple 

day-level queries for each search (e.g., U.S. “measles,” U.S. “MMR,” California “measles,” 

California “MMR”) to cover the entire time period and then stacked the resulting data. We then 

ran a single corresponding week-level query for each search and used this to calculate an 

adjustment factor (specifically, we multiply each day-level value by the week-level query result 

divided by the week-level average from the daily data). This adjustment accounts for differences 

in the relative prevalence of searches over time in the stacked day-level data (41, 42). 

 

CSD indicators.   To adjust for long-term changes in the mean number of tweets, we used the 

residual time series of sentiment-classified tweets for lag-1 AC and variance, generated by 

subtracting the raw time series from a detrended time series.  This is not necessary for the 

coefficient of variation since it already adjusts for long-term changes in number of tweets. We 

also removed the Disneyland social media peak (taken as running from January 22 to February 

14 based on the US GPS data set) to avoid issues with non-stationarity caused by the Disneyland 

outlier, and also because our focus is on CSD in the time before and after the outbreak. The 

methodology of computing indicators for the model was otherwise identical to that for the tweets 

and GT data. We used the Kendall tau rank correlation to quantify indicator trends (13) although 

we note that this statistic does not account for the size of increases or decreases over previous 

time points.  Additional details appear in SI Appendix: Section S4.   
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Figures  
 

 
Fig. 1: Interactions between disease spread, vaccine uptake, and online activity before, 
during and after the 2014-15 Disneyland, California measles outbreak.  (a) Kindergarten 
MMR vaccine uptake (black; note vertical scale) and measles case notifications in California 
(red): year in horizontal axis for vaccine uptake corresponds to the ending calendar year of the 
corresponding academic year (e.g. 2016 means 2015-16 academic year). Case notifications in 
2016 go only to Nov. 18. Most 2014 cases occurred at the end of the year.  (b) Number of US 
geocoded tweets for measles-relevant search terms, 2011-16, with a sharp spike in early 2015 
corresponding to Disneyland measles outbreak.  (c) Google Trends Internet search index for 
“MMR” (blue) or “measles” (orange) in California, 2011-16, with a sharp spike in early 2015 
corresponding to the Disneyland measles outbreak. Shaded region in (b,c) indicates outbreak 
time period. See SI Appendix: Sections S1 and S2 for details on search terms, data sources, and 
data extraction.  
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Fig. 2: Coupled behavior-disease model shows early warning signals as perceived risk 
increases toward a critical transition. Green line indicates location/time of critical transition in 
all panels. (a) Bifurcation diagram of vaccine uptake showing a critical transition from full to 
zero vaccine uptake when perceived relative risk (ω) exceeds social norm strength (δ) (solid lines 
are stable branches; dashed are unstable). (b) ω (solid line) increasing linearly past critical 
transition at ω=δ, (c) Vaccine uptake (black) and infection prevalence (red) as ω increases as in 
b. (d) Variance (red), lag-1 A.C. (blue), and coefficient of variation (black) for the time series in 
c (mean values at each time point across 500 realizations). Methodological details appear in 
Methods and SI Appendix: Sections S3, S4. 
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Fig. 3: Critical slowing down pro-vaccine tweets before and after Disneyland measles 
outbreak. (a-d) Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation for (a,e,i) 
US GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) model. The 
residual time series was used for variance and lag-1 AC. Kendall tau rank correlation coefficients 
are displayed before (regular font) and after (italic) the Disneyland peak with p-values denoted 
by <. Window width used to compute rolling averages is indicated by line interval.  Shaded 
region indicates outbreak time period.  Model panels show indicators averaged across 500 
stochastic model realizations (black), two standard deviations (shaded), and 10 example 
realizations (colored lines). See Methods and SI Appendix: Sections  S3, S4 and S5 for details.  
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Fig. 4: Critical slowing down in anti-vaccine tweets before and after Disneyland measles 
outbreak. (a-d) Variance, (e-h) lag-1 AC, and (i-l) coefficient of variation for (a,e,i) US GPS 
(b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) model. The residual 
time series was used for variance and lag-1 AC.  Kendall tau rank correlation coefficients are 
displayed before (regular font) and after (italic) the Disneyland peak with p-values denoted by <. 
Window width used to compute rolling averages is indicated by line interval.  Shaded region 
indicates outbreak time period.  Model panels show indicators averaged across 500 stochastic 
model realizations (black), two standard deviations (shaded), and 10 example realizations 
(colored lines).  See Methods and SI Appendix: Sections S3, S4 and S5 for details.  
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Fig. 5: Critical slowing down in Google Trends search index before and after Disneyland 
measles outbreak.  (a-d) Variance, (e-h) lag-1 AC, and (i-l) coefficient of variation for (a,e,i) 
US searches for “measles” (b,f,j) US searches for “MMR” (c,g,k) California searches for 
“measles”, and (d,h,l) California searches for “MMR”. The residual time series was used for 
variance and lag-1 AC.  Kendall tau rank correlation coefficients are displayed before (regular 
font) and after (italic) the Disneyland peak with p-values denoted by <. Window width used to 
compute rolling averages is indicated by line interval.  Shaded region indicates outbreak time 
period.  See Methods and SI Appendix: Section S4 for details.  
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Section S1.  Measles case notifications and measles-mumps-rubella (MMR) vaccine uptake 

data.  Data on measles case notifications were collected from the California Department of 

Public  Health website (1) and from the CDC Morbidity and Mortality Weekly Report (MMWR) 

(2).  Data on California measles-mumps-rubella (MMR) vaccine uptake in kindergartens at the 

state and school level were collected from California Department of Public Health reports (1).  

 

Section S2.  Extraction of tweets.  For the “GPS dataset” (see Methods), the Twitter 

Application Programming Interface (3) was used to collect all geotagged tweets within the 

continental United States, given by the bounding box (Latitude 24°, Longitude -126°) and 

(Latitude 51°, Longitude -66°). The location of the tweets was determined by limiting our search 

to geotagged tweets (i.e. tweets with precise location information in the metadata). Note that we 

expect to have close to 100% of the data of interest, as Twitter only limits the results in case a 

query would result in a dataset that is larger than 1% of the total Twitter data volume. Because 

our query is rather specific (see below), we are very unlikely to ever run into this limiting 

problem. A total of 27,906 tweets were collected that were posted from March 2nd, 2011 to 

October 9, 2016 and contained the following keywords or phrases:  

 

((vaccin* OR immuni*) AND (ingredient* OR risk* OR lies OR disease* OR 

exemption* OR safe* OR unsafe OR killing* OR conspiracy OR scandal* OR 

whistleblower* OR pharmaceutical OR CDC OR documentary OR truth* OR theory OR 

health OR infant* OR baby OR babies OR newborn* OR school* OR aluminum OR 

death* OR dead OR children OR kid* OR child* OR poison* OR toxic OR mercury OR 

injur* OR harm* OR brain OR paraly* OR scare* OR fear* OR autism OR IBS OR 
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https://paperpile.com/c/rD6tNB/GLYTE


autistic or "irritable bowel syndrome")) OR measles OR mmr OR "andrew wakefield" 

 

For  the “Location Field dataset” (see Methods), all tweets over the same time period (March 2nd, 

2011 to October 9, 2016) and under the same search terms were purchased from GNIP.com.  A 

total of 11,685,264 of these tweets also had content for the location field attached to each tweet. 

The location field allows twitter account holders to specify their geographic location as 

unstructured text.  One informal study has suggested that 66 percent of twitter account holders 

put an appropriate place name in the field (4).  We extracted place names using a modified 

version of the Geodict python library (5).  The library performs simple extraction by first 

tokenizing the text, checking the tokens against geographic place databases, and then matching 

place names against templates such as "CITY, REGION" or "CITY, COUNTRY".  A small scale 

test of the extraction library showed high precision, but low recall. Names that matched multiple 

localities were resolved in favor of the most populous locale.  In the instances where multiple 

localities were extracted from a single location field all of the localities were considered when 

determining if the tweet was from an account that identified as being in California or in the 

United States. From the 11,685,264 tweets with location field information we extracted 689,758 

unique location field entries.  Of these entries 111,856 contained localities identified as being 

inside the United States of America, and 11,374 as being inside California.  In total, this 

procedure identified 2,027,683 tweets with a US location, and 273,454 tweets with a California 

location.  

 

Section S3.  Mathematical model parameterization and simulation. We built on an existing 

deterministic model of coupled behavior-disease dynamics that incorporates social learning, peer 

pressure, and perceived vaccine and infection risk.  The model, which has been tested against 

case notification and vaccine uptake data for measles and pertussis (6–8), posits that members of 

the population play either a pro-vaccine or an anti-vaccine strategy.  Members engage in social 

learning by sampling one another at a constant rate; if a member samples someone who is 

receiving a higher payoff for playing a different strategy, s/he will switch strategies with a 

probability proportional to the expected gain in payoff (9). The payoff to vaccinate is given by 
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, where   is the perceived risk associated with vaccinating, x is proportion of the− xev = rv + δ0 rv  

population playing the vaccinator strategy, and δ0 is the strength of injunctive social norms 

whereby individuals conform to peer pressure. The payoff not to vaccinate is 

, where c is a product of the perceived risk of infection, reporting− I(t) (1 )en = c + δ0 − x  

probability, and a proportionality constant governing the perceived probability of becoming 

infected, and I(t) is the proportion of the population that is infected.  It can be shown that the 

differential equation governing the dynamics of the proportion of vaccinators, x, equals the 

difference between these two payoffs multiplied by a term kx(1-x) representing social learning 

(6).  This yields Equation [3] in the main text.  Finally, I(t) is obtained from a compartmental 

SIR  model of measles transmission where the vaccine uptake in children is modified as μ(1-x) 

(10).  This yields Equations [1] and [2] of the main text.  

To study critical slowing down, this model was converted into a stochastic model using 

the relation  , where y represents S, I, and x, F represents the right-handy F (y)dt σdWd =  +   

sides of Eqs. [1-3], dW is an additive Wiener process and   = [σS, σI, σx] is a scaling factorσ  

controlling the magnitude of noise for S, I, and x.  

Measles parameter values were based on previous literature on compartmental epidemic 

models and coupled behavior-disease models for paediatric infectious diseases, with μ = 0.02 per 

year, γ = 365/13/year, R0 = 16, and β = R0(μ + γ)/year (11–14). The strength of social norms, δ, 

was set to 5 × 10−4. This value was selected to investigate the worst case scenario in which the 

critical transition entails a drop from full vaccine coverage to no vaccine coverage.  The 

sampling rate 𝜅  was calibrated using the vaccine coverage data in Figure 1. During the time 

period  year (from 2015 to 2016), there was an increase in vaccine coverage  .tΔ = 1 x .02Δ = 0  

Using Euler iteration from the year 2015, where vaccine uptake  , we have.925x0 = 0  

.x x (1 )[− (2x )]ΔtΔ = κ 0 − x0 ω + I0 + δ 0 − 1  

The net payoff for vaccination   (square brackets) is a difficult value to discern for a particularEΔ  

year, however, note that it is on the order of  , and is positive in 2015 since there is a01 −4  

subsequent increase in vaccination coverage. Thus 

 

κ 000/yr = Δx
x (1−x )Δe0 0

~ 10−2

10 10−1 −4 = 1  
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Under this parameterization, the endemic branch is unstable and as a result the system will 

bifurcate from a state of full vaccine coverage to no vaccine coverage.  

 

For  the stochastic case used to model critical slowing down, noise levels were set to 𝜎 S=10-2, 

𝜎 I=10-5, 𝜎 x=10-2 and initial conditions were set to (S(0), I(0), x(0)) = (0.01, 10-4, 0.99), placing the 

trajectory in a small neighbourhood of the stable pure vaccinator, disease-free state.  The system 

is studied near the bifurcation point that marks the deterministic transition from high to low 

vaccine coverage, which occurs at w(t) = δ (Figure 2a). We investigate two scenarios; one where 

w(t) increases linearly from a baseline value and crosses the bifurcation point (Figure 2b), the 

other involves w(t) approaching and then receding from this point (Figures 3 and 4).  The linear 

time evolution of perceived risk w(t) in Figure 2b takes the form  

,(t) /20w = 1 + t  

which reaches the bifurcation value at   years. The piecewise relative risk that increases0t = 8  

and then decreases (Figures 3 and 4 in main text) take the form 

 

which reaches rebounds from the bifurcation point at   years. Additive noise was used in0t = 5  

the model to account for case importations. 

 

The coupled stochastic behavior-disease model was simulated in Matlab 2015b using the 

SDETools Library (15). The SDE was solved using the sde_euler function, which implements 

the Euler-Maruyama Method for numerically solving stochastic differential equations (16). 

Stochasticity may force the solutions out of physical phase space, however, so solutions were 

forced to remain in the physical space [0,1] for all model variables.  Random seeds were 

controlled using the RandSeed option for the solver to ensure reproducibility. The simulations in 

Figures 2-4 were run for 100 years with a step size of 5 × 10−4.  
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The baseline behaviour-disease model assumes exponential waiting times for the recovery time 

post infection. However, the infectious period is known to be more constant than this, suggesting 

the Erlang distribution (which is narrower and more centred about the mean) as a more reliable 

choice (17). The Erlang distribution is equivalent to a sequence of independent and identically 

distributed exponential distributions, meaning it can be incorporated into the model by simply 

introducing multiple ‘recovery’ compartments (18, 19). The number of compartments  ,n  

corresponds to the ‘shape parameter’ of the Erlang distribution and can been inferred from 

appropriate clinical data. We follow a previous study that uses  (17). The modified model0n = 2  

reads 

 

,x(1 )(− (2x ))dt
dx = κ − x ω + I + δ − 1  

,(1 ) SI Sdt
dS = μ − x − β − μ  

,SI nγ )Idt
dI1 = β − ( + μ 1  

,γI nγ )Idt
dI2 = n 1 − ( + μ 2  

…   

,γI nγ )Idt
dIn = n n−1 − ( + μ n  

where  .I = ∑
 

 
Ik  

As a further extension, we include a transmission forcing term that oscillates seasonally. This can 

be used to account for factors such as changing contact rates among school children (20, 21). We 

adopt the functional form  , with parameters   and(t) 1  cos( ))β =  < β > ( + α T
2Πt , α .1T = 1  = 0  

 equal to the original transmission rate.< β >  

 

Section S4.  Critical slowing down indicators for mathematical model and empirical data.  

For  the variance and lag-1 autocorrelation indicators, to adjust for non-stationarity caused by 

long-term changes in the total number of Twitter users, we smoothed the time series for both the 

stochastic model and the empirical data using a Nadarya Watson estimator with Gaussian kernel 

at a bandwidth of 10%, selected based on Silverman’s rule of thumb (22).  We then subtracted 

the smoothed time series from the raw time series to generate a detrended (residual) time series. 
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For  the coefficient of variation indicator, it is not necessary to use the residual time series since 

the indicator is already normalized by the mean.  The Kendall tau rank correlation coefficient 

(23) was used to measure trends in indicators before and after the critical transition.  

 

In the mathematical model, the variance and lag-1 autocorrelation (AC) of the residual time 

series and the coefficient of variation of the raw time series were computed (24, 25) using a 

rolling window of width 20 years.  Figures 2-4 show the resulting time series of the three 

indicators averaged over 500 realizations with different random number seeds, as well as two 

standard deviations over the 500 realizations, for the two types of risk evolution curves w(t). 

Note that these standard deviations do not correspond to hypothesis testing but rather as a gauge 

of stochastic variability in the model dynamics. All analyses were conducted in R using the 

earlywarnings R library (26). 

 

The procedure for detecting critical slowing down in the Twitter and Google Trends datasets was 

identical to that used in the model simulations except that the Kendall tau rank correlation 

coefficient was computed separately for pre- and post-outbreak sections, where pre-outbreak was 

defined as before January 22, 2015 and post-outbreak was defined as after February 14, 2015 

(thereby removing the Disneyland online social media peak). The same settings were used for 

the sensitivity analyses except where otherwise noted.  p-values were computed and appear in 

figure subpanels. Detrending and computation of the Kendall tau rank coefficient were 

conducted in Python (24), and computation of indicators were conducted in R.  

 

Section S5.  Sentiment analysis of tweets.  For both GPS and Location Field datasets, the 

sentiment of each tweet was classified into one of three mutually exclusive categories of 

pro-vaccine, anti-vaccine, or “other”. A tweet was considered to be pro-vaccine if the content of 

the tweet suggested the tweeter had a positive sentiment towards vaccines. This could have 

included information about their actions, feelings, or opinions toward vaccines or the diseases 

they prevent. For instance, these tweets were classified as pro-vaccine: “Get your children 

vaccinated people. #WhatGetsMeMad”; “The isolated measles outbreaks could be so much 
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worse if people just stop vaccinating their kids. People die from this, it's not a game”; “Baby well 

check and vaccinations today. Poor lil guy but he's happy now!”. A tweet was considered to be 

anti-vaccine if the content of the tweet suggested the tweeter had a negative sentiment towards 

vaccines. This could have included information about their actions, feelings, or opinions toward 

vaccines or the diseases they prevent, including actively minimizing or dismissing the dangers of 

the infection.  The following tweets were classified as anti-vaccine, for instance: “I am at loss as 

to what is happening, the lid is blown on vaccines as a scam, a money maker, harming people 

more then helping, FOI proves it”; “Who cares if I didn't vaccinate my daughter? It's not your 

problem it's not your child, it's MY child and my belief”, “Did You Know? Vaccinations are Not 

required to attend school. You are being Lied to. #NoShotsNoSchoolNotTrue”.  “Other” 

included any tweet that is neither clearly pro-vaccine or anti-vaccine.  These included ambiguous 

or  irrelevant, as well as objective news headlines that suggest the sentiment of the tweeter is 

neutral or not known.  Examples of “other” include “Johnny didn't get measles @midnight 

#BecauseIDie”, “"@HuffingtonPost: Sorry, Disney's new princess Elena probably doesn't count 

as Latina http://t.co/gqHYEM6uV2"#stop the measles outbreak”, “I've been exposed to the 

measles. #dayshift #mybossreadsmytweets (@ San Francisco General Hospital Emergency 

Room)”; “Reports from the @CDCgov show last year, the nation saw 644 measles cases in 27 

states. @wics_abc20  @foxillinois”; “Wow that hpv vaccine will be the death of me”. Many 

tweets included a mention of a news headline. If there was some sensationalist, motivational or 

emotion-eliciting words in the headline or if the tweeter commentated on the information, or was 

twisting or misinterpreting facts,  it was classified as either pro-vaccine or anti-vaccine according 

to the sentiment.  For instance, this tweet was classified as pro-vaccine: “@thehill: Chris 

Christie: Parents should have 'measure of choice' on vaccinating children: 

http://t.co/E9jRoYdZm2‰U. No!you ignoramus”, while this tweet was classified as 

anti-vaccine: “Austrian study demonstrates how vaccinated children have more disease, by 

@SECRETSOFTHEFED  http://t.co/ZFABxDvmfM.”  

 

For  the GPS dataset, Amazon Mechnical Turk (27) was used to classify the sentiment of tweets. 

The total number of MTurk crowdworkers was 256, and 3 workers were assigned to classify the 

7 

http://t.co/E9jRoYdZm2%E2%80%B0U
http://t.co/ZFABxDvmfM
https://paperpile.com/c/rD6tNB/2BZwy


sentiment of each tweet.  We defined complete agreement as when all the three crowd workers 

agree on a particular option for a particular tweet; partial agreement as when at least two crowd 

workers agree on a particular option and just one disagrees; and complete disagreement as when 

all the three crowd workers submit three different options for a particular tweet.  Workers were 

in complete agreement in 57.9% of tweets, in partial agreement for 39.5% of tweets, and in 

complete disagreement in 2.6% of tweets.  In cases of partial agreement, we assigned the 

sentiment of the tweet to be the sentiment assigned by the majority of the workers.  In the case of 

complete disagreement, the sentiment of the tweet was assigned to the “other” category. This 

procedure identified 10,926 pro-vaccine tweets and 2,136 negative tweets. The remaining 14,844 

were  classified as “other”. 

 

For  the Location Field dataset, the number of tweets was considerably larger, therefore machine 

learning was used to classify the sentiment of the tweets. The tweets were annotated according to 

sentiment using a linear support vector machine (28) trained on a data set of 75,000 random 

vaccine related tweets classified using MechTurk using the same methodology that was used for 

sentiment classification of the GPS dataset (see above).  Only tweets where there was unanimous 

agreement between the three workers who classified each tweet were used.  An equivalent 

number of tweets was used from each sentiment category (positive, negative, and neutral).  The 

classifier had precision scores of [0.80, 0.90, 0.79]  and recall scores of [0.83, 0.82, 0.82] for 

negative, neutral, and positive tweets respectively.  The algorithm generated 660,477 negative 

US  tweets; 883,570 positive US tweets; 483,636 US neutral tweets; 101,683 negative California 

tweets, 112,741 positive California tweets; and 59,030 California neutral tweets. 

 

Section S6. Critical slowing down in an expanded model. To back the argument that critical 

slowing down (CSD) in online social media may be used as a proxy for CSD in vaccine 

sentiment amongst the general population, we demonstrate CSD in an expanded model with 

compartments that could represent social media activity.  Consider an additional variable Y that 

is some measure of online activity with regards to positive vaccine sentiment.  For example Y 

could represent the frequency of pro-vaccine tweets or pro-vaccine users. Assuming that 
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dynamics in Y are driven by the sentiment of the general population ( ) and are proportional tox  

the net payoff of being pro vs. anti-vaccination ( ), we propose the generalized dynamicsEΔ  

.(x, )ΔEdt
dY = F Y [S1] 

The net payoff  is derived in Section S3 and  is some functionE − (t) (2x )Δ = ω + I + δ − 1 (x, )F Y  

that represents the unknown interplay dynamics between online social media Y and the sentiment 

of the general population  . This evolution equation for Y is then coupled to the original systemx  

given in Eqs. [1-3] of the main text. Note that the current setup assumes the impact of behaviour 

and opinion in the general population influences tweet sentiment (via the x dependence in [S1]), 

but the influence of twitter sentiment back on general population behaviour is much weaker (and 

so the original system remains as is). This assumption of unidirectional influence is supported by 

the observation that only a relatively small proportion of the population uses Twitter to regularly 

express views on vaccination (see SI Appendix: Section S2 for data on number of US and 

Canadian tweets).  

 

For  some fixed   (close to the tipping point) we may assume that the expanded system sitsω < δ  

in some quasi-stationary state (stationary on a fast time-scale whereby evolution of the risk 

parameter  can be assumed constant). In accordance with the disease-free equilibrium of theω  

original model, the adjusted stable state is   for some pro-vaccine tweet (0, 0, 1, Y )z*→  =     *  

count   . This imposes the conditionsY *  

(1, )F Y * = 0 [S2] 

< 0|∂Y
∂F

(1,Y )* [S3] 

which ensure stationarity [S2] and stability [S3] of  . To determine whether CSD occurs in thez*→   

variable Y near the tipping point  , we incorporate stochasticity into the model by adding aω = δ  

Gaussian white noise (GWN) term to each component of the system. The state of the system 

 then evolves according to the stochastic differential equationS, I , x, Y  )z→ = (     

z (z )dt dW (t)d→ = f
→ →

 + B
→

[S4] 

where  constitutes the deterministic dynamics given in Eqns. [1-3,S1],  diagf
→

B = a , , , )( 1 a2 a3 a4

is the diagonal matrix containing the noise amplitudes  , and  is a vector of independentai W (t)d
→
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incremental Wiener processes that generate the GWN. For small noise, dynamics about the 

stable state   are well approximated by the linearizationz*  

z dt dW (t)d→ = J + B
→

[S5] 

where  is the Jacobian matrix of  evaluated at  . This may readily be computed asJ f z*  

 

where 

,− |α = ∂Y
∂F

(1,Y )*  .|β = ∂x
∂F

(1,Y )*  

The eigenvalues of  determine the stability of the equilibrium  . They are given by J z* − ,λ1 = μ  

 and are all negative in the pre-tipping regime (− γ ),λ2 = ( + μ  − (δ ),λ3 = κ − ω  − (δ )λ4 = α − ω

 confirming the stability of  . Statistical properties of the fluctuations about  may be)ω < δ z* z*  

obtained analytically from S5, given that it takes the form of an Ornstein-Uhlenbeck Process 

(29). The covariance matrix   of the fluctuations satisfies the continuous Lyapunov equationΣ  

Σ J BJ + Σ T + B T = 0  

which may be solved using elementary matrix techniques (30). Reading off the diagonal 

elements give us the variances for each state variable. In particular, 

Var( )Y ( )= a4
2

2α(δ−ω) + a3
2

2κ(δ−ω)
β2

α(κ(δ−ω)+α)  

which diverges as the tipping point is approached ( , indicating that the new variable ) δ → ω Y

does indeed undergo CSD and should provide the relevant early warning signals. 
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SI Appendix Figures 

 

 
Figure S1: Critical slowing down in time series of pro-vaccine tweets before and after the 
Disneyland measles outbreak, weekly bins for data. (a-d) Variance, (e-h) lag-1 
autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) US GPS (b,f,j) US 
Location Field, (c,g,k) California Location Field data, and (d,h,l) mathematical model. Also 
displayed are Kendall tau rank correlation coefficients before ( ) and after ( ) the Disneylandτ τ︿  
online peak, with p-values in parentheses. Window width used to compute rolling averages is 
indicated by line intervals.  Shaded region in data panels indicates time period of the outbreak. 
Model panels show indicators averaged across 500 stochastic model realizations (black), two 
standard deviations of the 500 realizations (shaded), and 10 example realizations (colored lines). 
See Methods and SI Appendix: Sections  S3, S4 and S5 for further details.  
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Figure S2: Critical slowing down in time series of anti-vaccine tweets before and after the 
Disneyland measles outbreak, weekly bins for data. (a-d) Variance, (e-h) lag-1 
autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) US GPS (b,f,j) US 
Location Field, (c,g,k) California Location Field data, and (d,h,l) mathematical model. Also 
displayed are Kendall tau rank correlation coefficients before ( ) and after ( ) the Disneylandτ τ︿  
online peak, with p-values in parentheses. Window width used to compute rolling averages is 
indicated by line intervals.  Shaded region in data panels indicates time period of the outbreak. 
Model panels show indicators averaged across 500 stochastic model realizations (black), two 
standard deviations of the 500 realizations (shaded), and 10 example realizations (colored lines). 
See Methods and SI Appendix: Sections  S3, S4 and S5 for further details.  
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Figure S3: Critical slowing down in time series of pro-vaccine tweets before and after the 
Disneyland measles outbreak, rolling window width is 35% the width of the dataset. (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) 
mathematical model. Also displayed are Kendall tau rank correlation coefficients before ( ) andτ  
after ( ) the Disneyland online peak, with p-values in parentheses. Window width used toτ︿  
compute rolling averages is indicated by line intervals.  Shaded region in data panels indicates 
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model 
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example 
realizations (colored lines). See Methods and SI Appendix: Sections  S3, S4 and S5 for further 
details.  
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Figure S4: Critical slowing down in time series of pro-vaccine tweets before and after the 
Disneyland measles outbreak, rolling window width is 20% the width of the dataset. (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) 
mathematical model. Also displayed are Kendall tau rank correlation coefficients before ( ) andτ  
after ( ) the Disneyland online peak, with p-values in parentheses. Window width used toτ︿  
compute rolling averages is indicated by line intervals.  Shaded region in data panels indicates 
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model 
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example 
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further 
details.  
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Figure S5: Critical slowing down in time series of pro-vaccine tweets before and after the 
Disneyland measles outbreak, rolling window width is 10% the width of the dataset. (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) 
mathematical model. Also displayed are Kendall tau rank correlation coefficients before ( ) andτ  
after ( ) the Disneyland online peak, with p-values in parentheses. Window width used toτ︿  
compute rolling averages is indicated by line intervals.  Shaded region in data panels indicates 
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model 
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example 
realizations (colored lines). See Methods and SI Appendix: Sections  S3, S4 and S5 for further 
details.  
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Figure S6: Critical slowing down in time series of anti-vaccine tweets before and after the 
Disneyland measles outbreak, rolling window width is 35% the width of the dataset. (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) 
mathematical model. Also displayed are Kendall tau rank correlation coefficients before ( ) andτ  
after ( ) the Disneyland online peak, with p-values in parentheses. Window width used toτ︿  
compute rolling averages is indicated by line intervals.  Shaded region in data panels indicates 
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model 
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example 
realizations (colored lines).  See Methods and SI Appendix: Sections  S3, S4 and S5 for further 
details.  
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Figure S7: Critical slowing down in time series of anti-vaccine tweets before and after the 
Disneyland measles outbreak, rolling window width is 20% the width of the dataset. (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) 
mathematical model. Also displayed are Kendall tau rank correlation coefficients before ( ) andτ  
after ( ) the Disneyland online peak, with p-values in parentheses. Window width used toτ︿  
compute rolling averages is indicated by line intervals.  Shaded region in data panels indicates 
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model 
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example 
realizations (colored lines).  See Methods and SI Appendix: Sections  S3, S4 and S5 for further 
details.  
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Figure S8;  Critical slowing down in time series of anti-vaccine tweets before and after the 
Disneyland measles outbreak, rolling window width is 10% the width of the dataset. (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  GPS (b,f,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) 
mathematical model. Also displayed are Kendall tau rank correlation coefficients before ( ) andτ  
after ( ) the Disneyland online peak, with p-values in parentheses. Window width used toτ︿  
compute rolling averages is indicated by line intervals.  Shaded region in data panels indicates 
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model 
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example 
realizations (colored lines).  See Methods and SI Appendix: Sections S3, S4 and S5 for further 
details.  
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Figure S9: Critical slowing down in Google Trends search index before and after the 
Disneyland measles outbreak, rolling window with is 35% the width of the dataset.  (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  searches for “measles” (b,f,j) US searches for “MMR” (c,g,k) California searches for 
“measles”, and (d,h,l) California searches for “MMR”. Also displayed are Kendall tau rank 
correlation coefficients before ( ) and after ( ) the Disneyland online peak, with p-values inτ τ︿  
parentheses. Window width used to compute rolling averages is indicated by line intervals. 
Shaded region indicates time period of the outbreak.  See Methods and SI Appendix: Section S4 
for further details.  
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Figure S10: Critical slowing down in Google Trends search index before and after the 
Disneyland measles outbreak, rolling window with is 20% the width of the dataset.  (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  searches for “measles” (b,f,j) US searches for “MMR” (c,g,k) California searches for 
“measles”, and (d,h,l) California searches for “MMR”. Also displayed are Kendall tau rank 
correlation coefficients before ( ) and after ( ) the Disneyland online peak, with p-values inτ τ︿  
parentheses. Window width used to compute rolling averages is indicated by line intervals. 
Shaded region indicates time period of the outbreak.  See Methods and SI Appendix: Section S4 
for further details. 
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Figure S11: Critical slowing down in Google Trends search index before and after the 
Disneyland measles outbreak, rolling window with is 10% the width of the dataset.  (a-d) 
Variance, (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation (C.V.) indicators for (a,e,i) 
US  searches for “measles” (b,f,j) US searches for “MMR” (c,g,k) California searches for 
“measles”, and (d,h,l) California searches for “MMR”. Also displayed are Kendall tau rank 
correlation coefficients before ( ) and after ( ) the Disneyland online peak, with p-values inτ τ︿  
parentheses. Window width used to compute rolling averages is indicated by line intervals. 
Shaded region indicates time period of the outbreak.  See Methods and SI Appendix: Section S4 
for further details. 
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Figure S12:  Predicted indicator trends for baseline model compared to extended model 
with  seasonal variation in transmission rate and Erlang-distributed infectious period. 
Baseline mathematical model predictions for (a,e,i) x time series and (c,g,k) 1-x time series, and 
extended model predictions for (b,f,j) x time series and (d,h,l) 1-x time series. Indicators shown 
are (a-d) variance; (e-h) lag-1 autocorrelation, and (i-l) coefficient of variation. Panels show 
indicators averaged across 500 stochastic model realizations (black), one standard deviation of 
the 500 realizations (shaded), and 10 example realizations (colored lines).  Perceived risks 
increases and decreases as in Figures 3 and 4; dashed line shows time of maximum perceived 
risk.  See Methods and SI Appendix: Sections S3 and S4 for further details.  
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Figure S13: Sensitivity analysis on model parameter values for all three indicators.  
(a,b)  Variance; (c,d) lag-1 autocorrelation, and (e,f) coefficient of variance of the x time series at 
a range of possible parameter values when (a,c,e) perceived risk ω increases linearly beyond 
ω= ,   as   in   Figure   2   and    (b,d,f)   perceived   risk   ω   increases   linearly   to      ω=    and   then   declines,   as 
in Figures 3 and 4.  Black line shows mean value of 500 stochastic realizations; dotted vertical 
line shows location of maximal perceived risk; shaded region shows one standard deviation of 
the 500 stochastic realizations using parameter values sampled from triangular distributions. 
Epidemiological parameters, as well as the sampling rate k, were drawn from a triangular 
distribution ranging from half to three halves of the baseline value. The time of onset of the risk 
evolution curve was also sampled from a triangular distribution. For the linear case, the onset 
was drawn from a triangular distribution ranging from 8 to 12 years. Likewise, the time of onset 
of the triangular curve was drawn from a triangular distribution ranging from 20 to 40 years. The 
triangular curve remained symmetric about the t = 50 line, attaining a value of δ when t = 50. 
Double-headed arrow denotes length of rolling window used for computing lag-1 AC.  Further 
details appear in SI Appendix: Section S3 and S4.  
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Figure S14: Adaptive dynamics in extended model where perceived risk obeys dω/dt = a + 
bI(t), in nine model realizations, variance indicator.  Each set of three subpanels shows the 
results of a single realization.  In each set, top subpanel shows time evolution of ω(t) (solid line) 
and location of critical transition (dashed line); middle subpanel shows vaccine uptake (blue) and 
infection prevalence (red); bottom subpanel shows variance (green) of x time series computed 
using a rolling window of width indicated by arrows.  See SI Appendix: Section S3 and S4 for 
details on model simulation and computation of variance.  a=1×10−4, b= -0.2.  
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Figure S15: Adaptive dynamics in extended model where perceived risk obeys dω/dt = a + 
bI(t), in nine model realizations, lag-1 autocorrelation indicator.  Each set of three subpanels 
shows the results of a single realization.  In each set, top subpanel shows time evolution of ω(t) 
(solid line) and location of critical transition (dashed line); middle subpanel shows vaccine 
uptake (blue) and infection prevalence (red); bottom subpanel shows lag-1 autocorrelation 
(green) of x time series computed using a rolling window of width indicated by arrows.  See SI 
Appendix: Section S3 and S4 for details on model simulation and computation of lag-1 AC. 
a=1×10−4, b= -0.2.  
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Figure S16: Adaptive dynamics in extended model where perceived risk obeys dω/dt = a + 
bI(t), in nine model realizations, coefficient of variation indicator.  Each set of three 
subpanels shows the results of a single realization.  In each set, top subpanel shows time 
evolution of ω(t) (solid line) and location of critical transition (dashed line); middle subpanel 
shows vaccine uptake (blue) and infection prevalence (red); bottom subpanel shows coefficient 
of variation (green) of x time series computed using a rolling window of width indicated by 
arrows.  See SI Appendix: Section S3 and S4 for details on model simulation and computation of 
coefficient of variation.  a=1×10−4, b= -0.2. 
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Figure S17: Model dynamics away from the critical transition do not show critical slowing 
down .  (a) Vaccine uptake (blue) and infection prevalence (red) when perceived risk is set at 
ω=1×10−4; (b) variance; (c) lag-1 autocorrelation; and (d) coefficient of variation of time periods 
40 years leading up to 50 different outbreaks in model simulations.  Mean is denoted by black 
line and shaded regions represent one standard deviation over the 50 samples.  Double-headed 
arrows denotes width of rolling window used to compute lag-1 AC and variance.  Other 
parameter values and details of model simulation and indicator computation appear in SI 
Appendix: Sections S3 and S4.  
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