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Abstract

Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay
global eradication. Vaccinating decisions exemplify a complex, coupled system where
vaccinating behavior and disease dynamics influence one another. Such systems often exhibit
critical phenomena--special dynamics close to a tipping point leading to a new dynamical
regime. For instance, critical slowing down (declining rate of recovery from small perturbations)
may emerge as a tipping point is approached. Here, we collected and geocoded tweets about
measles-mumps-rubella vaccine and classified their sentiment using machine learning
algorithms. We also extracted data on measles-related Google searches. We find critical slowing
down in the data at the level of California and the United States in the years before and after the
2014-15 Disneyland, California measles outbreak. Critical slowing down starts growing
appreciably several years before the Disneyland outbreak as vaccine uptake declines and the
population approaches the tipping point. However, due to the adaptive nature of coupled
behavior-disease systems, the population responds to the outbreak by moving away from the
tipping point, causing “critical speeding up” whereby resilience to perturbations increases. A
mathematical model of measles transmission and vaccine sentiment predicts the same qualitative
patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large
epidemics. These results support the hypothesis that population vaccinating behavior near the
disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect
these patterns in digital social data might help us identify populations at heightened risk of

widespread vaccine refusal.
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Significance Statement

Complex adaptive systems exhibit characteristic dynamics near tipping points such as critical
slowing down--declining resilience to perturbations. We studied Twitter and Google search data
about measles from California and the United States before and after the 2014-15 Disneyland,
California measles outbreak. We find critical slowing down starting a few years before the
outbreak. However, population response to the outbreak causes resilience to increase afterwards.
A mathematical model of measles transmission and population vaccine sentiment predicts the
same patterns. Crucially, critical slowing down begins long before a system actually reaches a
tipping point. Thus, it may be possible to develop analytical tools to detect populations at

heightened risk of a future episode of widespread vaccine refusal.
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Introduction

In recent decades, vaccine refusal has contributed to the resurgence of measles and pertussis and
significantly delayed the global eradication of polio (1, 2). For instance, the 2014-15 measles
outbreak in Disneyland, California was preceded by declining kindergarten measles-mumps-
rubella (MMR) vaccine coverage in California between 2010 and 2014 (Fig. 1a) (3). Vaccine
compliance at school entry fell to 70%-90% in many cases and sometimes even lower in some
Los Angeles schools (3). Inadequate vaccine compliance appears to have played a role in the
outbreak (4), contributing to a significant peak in California measles case notifications in late
2014 and early 2015 (Fig. 1a) (5). The outbreak garnered significant public interest, causing a
large spike in both United States (US)-geocoded tweets regarding measles (Fig. 1b) and Google
Internet searches in California for “MMR” and “measles” (Fig. 1c) as reports of cases began to
flow in. Amidst the resulting public outcry, the California legislature began taking steps to
disallow non-medical exemptions (6-8), although statewide MMR vaccine uptake began to
recover before these policy changes went into effect (Fig. 1a) (3).

The changes in vaccinating behavior before and after the Disneyland measles outbreak
are consistent with a coupled behavior-disease dynamic in which vaccinating decisions and
disease dynamics influence one another in a nonlinear feedback loop. The mathematical
modeling of coupled behavior-disease dynamics is growing rapidly (9—12) although relatively
little attention has been devoted to critical phenomena in such systems. The theory of critical
transitions (tipping points) and their early warning signals may help public health officials
anticipate when and where resistance to vaccination might develop and intensify. A critical
transition occurs when a complex system shifts abruptly to a strongly contrasting state as an
external driver moves the system past a bifurcation point (13, 14). These shifts may exhibit
characteristic early warning signals as a consequence of critical slowing down (CSD), in which a
declining rate of recovery from small perturbations causes dynamics to become more variable.
Critical slowing down can be detected by changes in indicators such the variance, lag-1

autocorrelation, and coefficient of variation in high-resolution time series of state variables (13,

14).
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Social norms tend to reinforce currently accepted behavior and thus promote status quo
practices in populations (15-17). However, individuals also make vaccinating decisions based
on the perceived risks of the vaccine and the diseases they prevent (15). Here, we hypothesize
that coupled behavior-disease systems exhibit a tipping point arising from interactions between
social norms, perceived vaccine risk, and perceived disease risks. Specifically, we investigate
the effects of risk perception in terms of the ratio of the magnitude of perceived vaccine risk to
the magnitude of perceived risk of disease complications (we will call this “relative vaccine risk”
for short). Rising public concern about potential vaccine complications can cause the relative
vaccine risk to grow to a tipping point where social norms in support of a status quo of high
vaccine acceptance can no longer prevent a drop in pro-vaccine sentiment. If the population
moves beyond this tipping point, a decline in pro-vaccine sentiment causes fewer people to seek
vaccination and herd immunity breaks down, enabling outbreaks of various sizes. But before the
tipping point is reached, critical slowing down causes the variance, lag-1 autocorrelation and
coefficient of variation of time series of population sentiment toward the vaccine to increase.
Importantly, the increase in these three indicators should be noticeable long before any
significant change is obvious in the raw time series of population sentiment toward the vaccine.
In other words, they provide an early warning signal of a potential tipping point.

However, coupled behavior-disease systems are complex adaptive systems, which
introduces an important twist to our hypothesis. The relative vaccine risk is not simply an
external driver pushing the system past a tipping point. It also responds to changes in infection
prevalence. When an outbreak occurs, the relative vaccine risk drops. Hence, a critical transition
can be avoided if the population responds to the small outbreaks that begin to occur near a
tipping point (18). We hypothesize that these dynamics could lead to critical slowing down
before the outbreak followed by “critical speeding up” (improving resilience to perturbations)
after the outbreak as the population recedes from the tipping point. Although critical slowing
down in a time series of population vaccine sentiment will not necessarily predict whether the
population will pull back from the critical transition or go through the transition, it can at least
tell us that the population is getting dangerously close to a tipping point.

In this article, we report evidence for critical slowing down in sentiment-classified tweets
and in Google searches about measles before the Disneyland measles outbreak, followed by

critical speeding up afterwards. These empirical digital signals show patterns that match those
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exhibited by a mathematical model of the coupled dynamics of measles transmission and vaccine
sentiment that has been previously tested against case notification and vaccine uptake data for
measles and pertussis (19-21). Hence, these digital signals could be used as an early warning

signal of tipping points in coupled behavior-disease systems.

Results

Model. The mathematical model captures the interplay between disease dynamics, social

learning, social norms and perceived risk:

as

— = (1 —x) —uS = BSI, [1]
% = —ul + BSI — v, 2]
= = kx(1 - x)(—w () +1(t) + 6(2x — 1)), [3]

where S is the proportion of susceptible individuals; 7 is the proportion of infected individuals, x
is the proportion of individuals with pro-vaccine sentiment; x is the per capita birth and death
rate, f is the transmission rate, y is the rate of recovery from infection, « is the social learning
rate, O is the strength of social norms, and w(?) is the relative vaccine risk. We note that Eq. [3]
has been rescaled and that the proportion of recovered individuals R is simply 1-S-/. From Eq.
[1], vaccine uptake is given by x and thus all pro-vaccine individuals choose vaccination, while
the remainder 1-x of anti-vaccinators avoid it. Pro-vaccine sentiment becomes more widespread
when infection prevalence /(7) is higher or when vaccine risk o(t) is lower. Social norms
reinforce whichever sentiment--pro- or anti-vaccine--is more common.

We chose a simple model because critical slowing down only requires that the eigenvalue
go to zero at the bifurcation point. This is universal to many types of local bifurcations in both
simple and complex models (14). Hence, a broad class of more complicated models should
predict the same patterns. (For instance, it is possible to show that including a third category of
individuals with neutral sentiment also exhibits critical slowing down). Additional details about
model derivation, parameterization and simulation appear in SI Appendix: Section S3.

In the case of fixed vaccine risk, o(t)=w, the model has multiple stable equilibria (19).
The equilibrium (S, 7, x)=(0,0,1) is of particular interest because it corresponds to a disease-free

state with full vaccine uptake that is stable when relative vaccine risk is less than the strength of
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social norms (0w<d). However, as o increases past O the equilibrium is destabilized through a
critical transition at ®=0 and the population converges to a state of endemic infection and no
vaccine uptake (Fig. 2a). At other parameter values, a drop to endemic infection and intermediate
vaccine coverage is also possible.

To study critical slowing down, the model was converted to a stochastic model by
including an additive Wiener process (SI Appendix: Section S3). When o(t) increases linearly
until it crosses the tipping point (Fig. 2b), vaccine uptake collapses and an epidemic occurs (Fig.
2¢). But before this happens, the variance, lag-1 autocorrelation and coefficient of variation of
the time series of pro-vaccine sentiment (x) increase as the critical transition is approached (Fig.
2d). The increase begins long before any significant change is obvious in the raw x time series
and hence they provide an early warning signal of the critical transition. We will show later in
the Results section that the proportion of individuals with anti-vaccine sentiment (1-x) also

exhibits critical slowing down.

Approach. In the next subsection, we compare the temporal evolution of the three indicators in
digital social data before and after the Disneyland measles outbreak to the model predictions
when the relative vaccine risk w(?) increases linearly to the tipping point at ®=9 and then
decreases linearly back to a baseline level (see SI Appendix: Section S3)--this is intended as a
first approximation to how critical slowing down (CSD) might occur before the outbreak,
followed by critical speeding up after.

We treated CSD in the time series of number of tweets with pro-vaccine (respectively,
anti-vaccine) sentiment as a proxy for CSD in the time series of the proportion of individuals
with pro-vaccine (respectively, anti-vaccine) sentiment in the general population (x and 1-x; note
that x is also vaccine uptake in the model). This is supported by research showing a correlation
between sentiment of tweets on influenza vaccine and actual influenza vaccine uptake (22), and
between discussion of individuals’ health status in social media and their actual health status
(23). We also show that CSD in total tweets of a given sentiment is a good proxy for CSD in
population vaccine sentiment and uptake in a broad class of expanded models in which a critical
transition in abundance of individuals with pro- or anti-vaccine sentiment drives an observable

change in the number of pro- or anti-vaccine tweets in online social media (SI Appendix: Section

36).
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We analyzed three empirical data sets. The US GPS data set included measles-related
tweets with latitude and longitude coordinates in the US. The much larger California and US
Location Field data sets included measles-related tweets from users indicating a California or US
location in their user location field. We used a machine learning algorithm to classify tweet
sentiment in the Location Field data sets into pro-vaccine, vaccine, or other. The US GPS data

set sentiment was classified using Amazon Mechanical Turk (see Methods).

Pro-vaccine tweets. The time series of pro-vaccine tweets shows evidence for CSD in the years
before the Disneyland outbreak (Fig. 3). In the California Location Field data set, we observe
that the variance (Fig. 3c), lag-1 autocorrelation (AC) (Fig. 3g) and coefficient of variation (Fig.
3k) all increase significantly before the outbreak. The increase in these indicators begins well
before the rolling window used for local temporal averaging reaches the time of the outbreak.
Hence, the analysis reveals a long-term trend in indicators beginning several years before the
outbreak. We interpret this trend as the system’s growing variability as the population
approaches a critical transition to widespread reductions in vaccine uptake (Fig. 2).

After the outbreak, however, California responds by receding from the critical transition,
rather than being pushed past it to a new dynamical regime of endemic infection and
significantly reduced vaccine uptake (as occurred for whole cell pertussis vaccination in the
United Kingdom, for instance (21)). This is indicated by a decline in all three indicators after the
outbreak (Fig. 3 c,g.k), as well as by a reversal of the declining trend in vaccine coverage (Fig.
Ic). The system’s resilience to perturbations improves as the population recedes from the
tipping point.

The decrease in the indicators after the outbreak is also a useful test of whether
underlying changes in the total number of Twitter users over the study time window could be
driving the observed increase in the indicators before the outbreak. If this were the case, we
would not expect to see a decline in the indicators or the number of raw tweets after the
outbreak.

The patterns are similar but not as consistent for the data sets from the much larger US
population, as expected. Variance increases for both US GPS and US Location Field data sets
(Fig. 3a,b), but lag-1 AC increases only for the US GPS data set (Fig. 3e), and the coefficient of

variance increases only for the US Location Field data set (Fig. 3j). After the outbreak, the same
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indicators in the same data sets decline (Fig. 3a,b,e,j) while the indicator increases in two of the
subpanels (Fig. 31,f).

The mathematical model shows the same general trends, including a stronger signal for
variance than for lag-1 AC or coefficient of variation. The three indicators grow and then decline
on average in a pattern similar to that observed in the data, as the perceived relative risk w(?)
approaches and then recedes from the tipping point (Fig. 3d,h,i). The relative magnitude of
change in the indicators is also similar in model and data: changes in variance are largest,
followed by coefficient of variation, followed in turn by lag-1 AC. In the model, only 66%, 63%
and 67% of stochastic realizations exhibit an increase followed by a decrease in the Kendall tau

coefficient for variance, lag-1 AC, and coefficient of variation, respectively.

Anti-vaccine tweets. Similar trends are observed for anti-vaccine tweets (Fig. 4), with a
surprising exception. As before, the increasing and then decreasing trend in variance is strongest
in both model and the three data sets (Fig. 4a-d). However, using Kendall tau values as the
criterion, lag-1 AC increases before the outbreak in only one of the three datasets (the US GPS
data set, Fig. 4e) and decreases after the outbreak in only two of the data sets (Fig. 4e,g). Trends
in lag-1 AC in the model are correspondingly weak, with many stochastic realizations failing to
exhibit the increase and decrease (Fig. 4h).

Surprisingly, the coefficient of variation decreases consistently over most of the pre-
outbreak time period in all three datasets (Fig. 4i-k). The model also exhibits this inversion (Fig.
41), with a decrease in the indicator as the tipping point is approached and an increase as the
population recedes from it, on average and in 59% of the stochastic realizations (Fig. 41). Hence
the data sets show a post-outbreak decrease as well, and not all pre-outbreak Kendall tau values
are negative at the 5% significance level if the time just before the Disneyland outbreak is
included. The decline in the coefficient of variation before the tipping point for anti-vaccine but
not pro-vaccine sentiment occurs because the statistic divides the standard deviation by the
mean. The mean number of non-vaccinators increases from a small value as the tipping point is

approached, while the mean number of vaccinators decreases.

Google Trends. Google Trends (GT) is increasingly used in social science and behavioral

research (24) and the study of infectious diseases (25, 26). Our search terms did not permit an
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analysis of sentiment, but previous research indicates that salient and controversial issues
generate higher search volumes (27-29), including a study finding a significant inverse
correlation between MMR vaccination coverage and Internet search activity, tweets and
Facebook posts (28). If we assume salient and controversial issues are ones on which population
opinion is more divided, we can study critical slowing down in the GT Internet search index
concerning measles-related searches. These data are also consistent with critical dynamics near a
tipping point. The GT data at the national and state levels generally show the same pattern as the
Twitter data, with a rise in indicators before the outbreak and a decline afterward (Fig. 5).

Trends are stronger at state than national levels, and for “MMR” rather than “measles” searches,

which may reflect the greater volume of GT data on “MMR” than “measles” (Fig. 1b).

Sensitivity Analyses. We generated Figs. 3 and 4 using weekly instead of daily bins. For pro-
vaccine tweets (SI Appendix Fig. S1), the variance always increases and then decreases, similar
to the daily data. Lag-1 AC shows no trend, or tends to decline before the tipping point.
However, lag-1 AC measures changes in memory and this is to be expected in a system where
memory is short-lived: the life span of a typical online social media news item is less than 24
hours (30), suggesting daily or sub-daily granularity may be required to detect changes in lag-1
AC. The coefficient of variation exhibits a statistically significant increase and decrease before
and after the outbreak. Most of these patterns are repeated in the analysis of anti-vaccine tweets
using weekly bins (SI Appendix Fig. S2). Results were also qualitatively unchanged when
changing the rolling window width used for temporal averaging (SI Appendix Fig. S3-S11).

We analyzed an extended model that includes seasonal variation in the transmission rate
and an Erlang-distributed infectious period, both of which are known to influence disease
dynamics (31, 32). We found that the indicator trends were unaffected (SI Appendix Fig. S12).
Through a probabilistic sensitivity analysis we found that results are qualitatively unchanged
across a broad range of parameter values (SI Appendix Fig. S13). To study when happens when
the relative vaccine risk responds to infection incidence, we simulated a variant model where
(t) = a + bl(t). This variant exhibited growth and decline in the indicators before and after
outbreaks, similar to Figs. 3-5 (SI Appendix Fig. S14-16). To rule out that the observed increase

and decrease in the indicators can also happen around ordinary (non-critical) outbreaks we

10
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simulated the model at a fixed value of w far from the critical point. We found that all indicators

were flat both before and after non-critical outbreaks (SI Appendix Fig. S17).

Discussion

This article presents evidence that coupled behavior-disease dynamics near the disease
elimination threshold is a critical phenomenon. We analyzed tweets and Google searches and
showed how the patterns in the empirical data matched those exhibited by a mathematical model
of coupled dynamics of measles transmission and vaccine sentiment and uptake. The three
indicators--variance, lag-1 autocorrelation, and coefficient of variance--tended to increase before
the Disneyland outbreak due to critical slowing down, and then decrease after the outbreak due
to critical speeding up (with the unexpected exception of the coefficient of variation in anti-
vaccinators where the trend was inverted). Our model predicts the same trends in a population
that approaches but then recedes from a tipping point.

The variance indicator showed the most robust trends. However, the coefficient of
variation has the advantage that it inherently adjusts for changes in the mean number of tweets,
and therefore does not require further processing of the data through computing a residual time
series, as required for variance and lag-1 autocorrelation. The lag-1 autocorrelation tests for
changes in system memory (13). This indicator often--but not always--showed the expected
trends in our data, and trends were not as strong under weekly binning. We speculate this is
either because memory is too short-lived in online social media for changes to be detected in data
with daily or weekly granularity, or due to the presence of higher-order autoregressive processes
that cannot be detected by lag-1 autocorrelation (33, 34).

The Disneyland outbreak was small and the response in population vaccine uptake rapid
compared to other episodes of vaccine refusal where populations appear to have crossed a
threshold into a regime of endemic infection and significantly reduced population-wide vaccine
coverage. This latter scenario occurred for MMR vaccine in England & Wales in the 1990s and
2000s (80% minimum coverage) (21); whole cell pertussis vaccine in England & Wales in the
1970s (30% minimum coverage) (21); and oral polio vaccine in northern Nigeria in 2003-2004

(1). Inrecent years, measles outbreaks larger than the Disneyland outbreak have occurred in

11
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many under-vaccinated European populations (35). The social media response to the Disneyland
outbreak was enormous considering the relatively small size of the outbreak. We speculate this
was because the outbreak was the largest in California in many years and it started in a major
tourist destination.

A limitation of our model is that it does not account for spatial clustering. This is a key
aspect given the presence of clusters of non-vaccinators during the Disneyland measles outbreak
(3) and it presents an opportunity for further research given the importance of networks in both
infection transmission and strategic interactions (36, 37). The growth of clusters of non-
vaccinators is not necessarily a competing hypothesis but rather could represent the spatial
manifestation of critical dynamics. Spatially explicit models of behavioral dynamics in related
systems develop clusters of individuals with homogeneous opinions as the population starts to
“bubble” near a critical phase transition (38). Critical slowing down near a phase transition can
manifest in similar ways in both spatial and temporal indicators because the underlying process
is similar. Hence, the growing clusters of unvaccinated individuals observed before the
Disneyland measles outbreak may signify bubbling near a critical phase transition. This
hypothesis could be tested through further research on critical transitions in social networks of
Twitter users. We also note that spatio-temporal analysis may take advantage of different and
potentially better indicators than purely temporal analysis (39). More research is needed to
better understand the informational content of the indicators in spatially structured populations
and thereby distinguish qualitatively different outcomes, such as a quick and effective population
response versus a protracted period of reduced vaccine coverage and endemic infection. Such
analysis could incorporate vaccine uptake data if it has good spatial and temporal resolution (3).

A second limitation is our use of critical slowing down in the number of sentiment-
classified tweets as a proxy for critical slowing down in vaccine sentiment and uptake in the
general population. This assumption could be relaxed by using more detailed models that include
a submodel for online social media activity that accounts for how different users generate
differing numbers of tweets and how online social media activity interacts with social processes
in the general population.

Our empirical results are largely consistent with our model predictions but cannot
definitively establish causality. Future research could evaluate out-of-sample model predictions

and consider the relationship between contemporaneous indicators of vaccine sentiment, such as

12
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tweets and search data, and observed vaccine uptake. It would also be valuable to consider other
events that might affect sentiment dynamics near tipping points and to evaluate whether the
significant population response to the Disneyland outbreak depended on its extensive media
coverage.

Still, these results suggest that population vaccinating behavior near the elimination
threshold can be characterized as a critical phenomenon near a tipping point in a coupled
behavior-disease system. Our findings highlight the value of using digital social data to identify
early warning signals of critical dynamics in adaptive behavior-disease systems and socio-
ecological systems more generally (18). They also demonstrate the value of using dynamical
systems theory in data science. The theory of critical phenomena in complex systems may shed

light on other study systems represented in very large social media data sets.

Methods

Twitter data. For the US GPS data set we obtained 27,906 measles-related tweets from March
2,2011, to October 9, 2016, with GPS coordinates in the US. We used Amazon Mechanical Turk
to classify the sentiment of these tweets into 10,926 “pro-vaccine”, 2,136 “anti-vaccine”, and
14,844 “other” categories. A tweet was defined as “pro-vaccine” (respectively, “anti-vaccine”)
if the tweet content suggested the tweeter had a positive (respectively, negative) sentiment
towards vaccines. This included any information about their feelings or opinions toward vaccines
or the diseases they prevent. A tweet was placed in “other” if it was neither pro- nor anti-
vaccine, for instance because it was irrelevant, ambiguous, or if the sentiment of the tweeter
could not be clearly ascertained. Baseline analysis used daily bins. Additional details appear in
SI Appendix: Sections S2 and S5. Over the same time period, 11,685,264 tweets had
information in the user location field. To generate the Location Field data sets these tweets were
geotagged using a modified version of the Geodict library and classified into “pro-vaccine”,
“anti-vaccine” and “other” using a linear support vector machine. The classifier obtained
precision scores of 80%, 90%, 79% and recall scores of 83%, 82%, 82% for anti-vaccine, other,
and pro-vaccine tweets respectively (F1 scores: 81%, 86%, 80%). The process identified
660,477 anti-vaccine, 883,570 pro-vaccine, and 483,636 other tweets in the US data set, and
101,683 anti-vaccine, 112,741 pro-vaccine, and 59,030 other tweets in the California data set.

13
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Baseline analysis used daily bins. Additional details including references appear in SI Appendix:

Section S2 and S5. Data are available in SI Datasets S1-S3.

Google Trends data extraction. We analyzed GT search data for January 2011 to December
2015 using the gtrendsR (40) package. Unfortunately, the longest range of day-level query data
Google provides is three months, which generates results in the arbitrary units of GT data that
are not comparable between searches. (GT returns an estimate of the relative prevalence of
searches matching the query for the time period and geography in question when the prevalence
of the search term or terms exceeds some unspecified threshold.) As a result, we ran multiple
day-level queries for each search (e.g., U.S. “measles,” U.S. “MMR,” California “measles,”
California “MMR?”) to cover the entire time period and then stacked the resulting data. We then
ran a single corresponding week-level query for each search and used this to calculate an
adjustment factor (specifically, we multiply each day-level value by the week-level query result
divided by the week-level average from the daily data). This adjustment accounts for differences

in the relative prevalence of searches over time in the stacked day-level data (41, 42).

CSD indicators. To adjust for long-term changes in the mean number of tweets, we used the
residual time series of sentiment-classified tweets for lag-1 AC and variance, generated by
subtracting the raw time series from a detrended time series. This is not necessary for the
coefficient of variation since it already adjusts for long-term changes in number of tweets. We
also removed the Disneyland social media peak (taken as running from January 22 to February
14 based on the US GPS data set) to avoid issues with non-stationarity caused by the Disneyland
outlier, and also because our focus is on CSD in the time before and after the outbreak. The
methodology of computing indicators for the model was otherwise identical to that for the tweets
and GT data. We used the Kendall tau rank correlation to quantify indicator trends (13) although
we note that this statistic does not account for the size of increases or decreases over previous

time points. Additional details appear in SI Appendix: Section S4.
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Fig. 1: Interactions between disease spread, vaccine uptake, and online activity before,
during and after the 2014-15 Disneyland, California measles outbreak. (a) Kindergarten
MMR vaccine uptake (black; note vertical scale) and measles case notifications in California
(red): year in horizontal axis for vaccine uptake corresponds to the ending calendar year of the
corresponding academic year (e.g. 2016 means 2015-16 academic year). Case notifications in
2016 go only to Nov. 18. Most 2014 cases occurred at the end of the year. (b) Number of US
geocoded tweets for measles-relevant search terms, 2011-16, with a sharp spike in early 2015
corresponding to Disneyland measles outbreak. (¢) Google Trends Internet search index for
“MMR” (blue) or “measles” (orange) in California, 2011-16, with a sharp spike in early 2015
corresponding to the Disneyland measles outbreak. Shaded region in (b,c¢) indicates outbreak

time period. See SI Appendix: Sections S1 and S2 for details on search terms, data sources, and

data extraction.
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Fig. 2: Coupled behavior-disease model shows early warning signals as perceived risk
increases toward a critical transition. Green line indicates location/time of critical transition in
all panels. (a) Bifurcation diagram of vaccine uptake showing a critical transition from full to
zero vaccine uptake when perceived relative risk (o) exceeds social norm strength (6) (solid lines
are stable branches; dashed are unstable). (b) o (solid line) increasing linearly past critical
transition at w=0, (¢) Vaccine uptake (black) and infection prevalence (red) as o increases as in
b. (d) Variance (red), lag-1 A.C. (blue), and coefficient of variation (black) for the time series in
¢ (mean values at each time point across 500 realizations). Methodological details appear in
Methods and SI Appendix: Sections S3, S4.
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Fig. 3: Critical slowing down pro-vaccine tweets before and after Disneyland measles
outbreak. (a-d) Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation for (a,e,i)
US GPS (b.f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,I) model. The
residual time series was used for variance and lag-1 AC. Kendall tau rank correlation coefficients

are displayed before (regular font) and after (italic) the Disneyland peak with p-values denoted
by <. Window width used to compute rolling averages is indicated by line interval. Shaded
region indicates outbreak time period. Model panels show indicators averaged across 500
stochastic model realizations (black), two standard deviations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for details.
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Fig. 4: Critical slowing down in anti-vaccine tweets before and after Disneyland measles
outbreak. (a-d) Variance, (e-h) lag-1 AC, and (i-1) coefficient of variation for (a,e,i) US GPS
(b,£,j) US Location Field, (c,g,k) California Location Field data, and (d,h,l) model. The residual
time series was used for variance and lag-1 AC. Kendall tau rank correlation coefficients are
displayed before (regular font) and after (italic) the Disneyland peak with p-values denoted by <.
Window width used to compute rolling averages is indicated by line interval. Shaded region
indicates outbreak time period. Model panels show indicators averaged across 500 stochastic
model realizations (black), two standard deviations (shaded), and 10 example realizations
(colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for details.
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Fig. S: Critical slowing down in Google Trends search index before and after Disneyland
measles outbreak. (a-d) Variance, (e-h) lag-1 AC, and (i-1) coefficient of variation for (a,e,i)
US searches for “measles” (b,f,j) US searches for “MMR” (¢,g,k) California searches for
“measles”, and (d,h,l) California searches for “MMR”. The residual time series was used for
variance and lag-1 AC. Kendall tau rank correlation coefficients are displayed before (regular
font) and after (italic) the Disneyland peak with p-values denoted by <. Window width used to
compute rolling averages is indicated by line interval. Shaded region indicates outbreak time
period. See Methods and SI Appendix: Section S4 for details.
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Section S1. Measles case notifications and measles-mumps-rubella (MMR) vaccine uptake
data. Data on measles case notifications were collected from the California Department of
Public Health website (1) and from the CDC Morbidity and Mortality Weekly Report (MMWR)
(2). Data on California measles-mumps-rubella (MMR) vaccine uptake in kindergartens at the

state and school level were collected from California Department of Public Health reports (1).

Section S2. Extraction of tweets. For the “GPS dataset” (see Methods), the Twitter
Application Programming Interface (3) was used to collect all geotagged tweets within the
continental United States, given by the bounding box (Latitude 24°, Longitude -126°) and
(Latitude 51°, Longitude -66°). The location of the tweets was determined by limiting our search
to geotagged tweets (i.e. tweets with precise location information in the metadata). Note that we
expect to have close to 100% of the data of interest, as Twitter only limits the results in case a
query would result in a dataset that is larger than 1% of the total Twitter data volume. Because
our query is rather specific (see below), we are very unlikely to ever run into this limiting
problem. A total of 27,906 tweets were collected that were posted from March 2nd, 2011 to

October 9, 2016 and contained the following keywords or phrases:

((vaccin®* OR immuni*) AND (ingredient® OR risk* OR lies OR disease* OR
exemption* OR safe* OR unsafe OR killing* OR conspiracy OR scandal* OR
whistleblower* OR pharmaceutical OR CDC OR documentary OR truth* OR theory OR
health OR infant* OR baby OR babies OR newborn* OR school* OR aluminum OR
death™ OR dead OR children OR kid* OR child* OR poison* OR toxic OR mercury OR
injur* OR harm* OR brain OR paraly* OR scare* OR fear* OR autism OR IBS OR


https://paperpile.com/c/rD6tNB/m9xT1
https://paperpile.com/c/rD6tNB/iLJbK
https://paperpile.com/c/rD6tNB/m9xT1
https://paperpile.com/c/rD6tNB/GLYTE

autistic or "irritable bowel syndrome")) OR measles OR mmr OR "andrew wakefield"

For the “Location Field dataset” (see Methods), all tweets over the same time period (March 2nd,
2011 to October 9, 2016) and under the same search terms were purchased from GNIP.com. A
total of 11,685,264 of these tweets also had content for the location field attached to each tweet.
The location field allows twitter account holders to specify their geographic location as
unstructured text. One informal study has suggested that 66 percent of twitter account holders
put an appropriate place name in the field (4). We extracted place names using a modified
version of the Geodict python library (5). The library performs simple extraction by first
tokenizing the text, checking the tokens against geographic place databases, and then matching
place names against templates such as "CITY, REGION" or "CITY, COUNTRY". A small scale
test of the extraction library showed high precision, but low recall. Names that matched multiple
localities were resolved in favor of the most populous locale. In the instances where multiple
localities were extracted from a single location field all of the localities were considered when
determining if the tweet was from an account that identified as being in California or in the
United States. From the 11,685,264 tweets with location field information we extracted 689,758
unique location field entries. Of these entries 111,856 contained localities identified as being
inside the United States of America, and 11,374 as being inside California. In total, this
procedure identified 2,027,683 tweets with a US location, and 273,454 tweets with a California

location.

Section S3. Mathematical model parameterization and simulation. We built on an existing
deterministic model of coupled behavior-disease dynamics that incorporates social learning, peer
pressure, and perceived vaccine and infection risk. The model, which has been tested against
case notification and vaccine uptake data for measles and pertussis (6—8), posits that members of
the population play either a pro-vaccine or an anti-vaccine strategy. Members engage in social
learning by sampling one another at a constant rate; if a member samples someone who is
receiving a higher payoff for playing a different strategy, s’he will switch strategies with a

probability proportional to the expected gain in payoft (9). The payoff to vaccinate is given by


https://paperpile.com/c/rD6tNB/XC5M
https://paperpile.com/c/rD6tNB/M3FB
https://paperpile.com/c/rD6tNB/Owtm7+3aGgc+ifS0l
https://paperpile.com/c/rD6tNB/0dJKP

e, =—r, T+ d,x, where r, is the perceived risk associated with vaccinating, x is proportion of the
population playing the vaccinator strategy, and 9§, is the strength of injunctive social norms
whereby individuals conform to peer pressure. The payoff not to vaccinate is

e, = cl(f) + 6,(1 —x), where c is a product of the perceived risk of infection, reporting
probability, and a proportionality constant governing the perceived probability of becoming
infected, and /(¢) is the proportion of the population that is infected. It can be shown that the
differential equation governing the dynamics of the proportion of vaccinators, x, equals the
difference between these two payoffs multiplied by a term kx(1-x) representing social learning
(6). This yields Equation [3] in the main text. Finally, /(¢) is obtained from a compartmental
SIR model of measles transmission where the vaccine uptake in children is modified as x(1-x)
(10). This yields Equations [1] and [2] of the main text.

To study critical slowing down, this model was converted into a stochastic model using
the relation dy = F(y)dt + GdW , where y represents S, /, and x, F represents the right-hand
sides of Egs. [1-3], dW is an additive Wiener process and 6 = [, G,, 6, ] is a scaling factor
controlling the magnitude of noise for S, 7, and x.

Measles parameter values were based on previous literature on compartmental epidemic
models and coupled behavior-disease models for paediatric infectious diseases, with u = 0.02 per
year, y = 365/13/year, R, = 16, and B = R (u + y)/year (11-14). The strength of social norms, J,
was set to 5 x 107*. This value was selected to investigate the worst case scenario in which the
critical transition entails a drop from full vaccine coverage to no vaccine coverage. The
sampling rate x was calibrated using the vaccine coverage data in Figure 1. During the time
period At =1 year (from 2015 to 2016), there was an increase in vaccine coverage Ax = 0.02.
Using Euler iteration from the year 2015, where vaccine uptake x, = 0.925, we have

Ax =wx,(1 —x)[—o+1,+2x,— 1)]Ar.
The net payoff for vaccination AE (square brackets) is a difficult value to discern for a particular
year, however, note that it is on the order of 1074 , and is positive in 2015 since there is a

subsequent increase in vaccination coverage. Thus

= A« 102 _
K= xO(l_xo)Ae ~ 10*11074 - 1000/}/}’



https://paperpile.com/c/rD6tNB/Owtm7
https://paperpile.com/c/rD6tNB/1IqjE
https://paperpile.com/c/rD6tNB/z8ltG+w2MSX+5hBPS+W25Z

Under this parameterization, the endemic branch is unstable and as a result the system will

bifurcate from a state of full vaccine coverage to no vaccine coverage.

For the stochastic case used to model critical slowing down, noise levels were set to =107,
=107, =107 and initial conditions were set to (S(0), 1(0), x(0)) = (0.01, 10, 0.99), placing the
trajectory in a small neighbourhood of the stable pure vaccinator, disease-free state. The system
is studied near the bifurcation point that marks the deterministic transition from high to low
vaccine coverage, which occurs at w(¢) = § (Figure 2a). We investigate two scenarios; one where
w(?) increases linearly from a baseline value and crosses the bifurcation point (Figure 2b), the
other involves w(¢) approaching and then receding from this point (Figures 3 and 4). The linear
time evolution of perceived risk w(¢) in Figure 2b takes the form

w(t) =1+120,
which reaches the bifurcation value at # = 80 years. The piecewise relative risk that increases
and then decreases (Figures 3 and 4 in main text) take the form

1 0<t<40
2t—15 40<t<50
25— 2t 50<t<60
1 60 <t < 100

w(t) =

which reaches rebounds from the bifurcation point at ¢ = 50 years. Additive noise was used in

the model to account for case importations.

The coupled stochastic behavior-disease model was simulated in Matlab 2015b using the
SDETools Library (15). The SDE was solved using the sde_euler function, which implements
the Euler-Maruyama Method for numerically solving stochastic differential equations (16).
Stochasticity may force the solutions out of physical phase space, however, so solutions were
forced to remain in the physical space [0,1] for all model variables. Random seeds were
controlled using the RandSeed option for the solver to ensure reproducibility. The simulations in

Figures 2-4 were run for 100 years with a step size of 5 x 107


https://paperpile.com/c/rD6tNB/kZ81Z
https://paperpile.com/c/rD6tNB/ihHN2

The baseline behaviour-disease model assumes exponential waiting times for the recovery time
post infection. However, the infectious period is known to be more constant than this, suggesting
the Erlang distribution (which is narrower and more centred about the mean) as a more reliable
choice (17). The Erlang distribution is equivalent to a sequence of independent and identically
distributed exponential distributions, meaning it can be incorporated into the model by simply
introducing multiple ‘recovery’ compartments (18, 19). The number of compartments 7,
corresponds to the ‘shape parameter’ of the Erlang distribution and can been inferred from

appropriate clinical data. We follow a previous study that uses » = 20 (17). The modified model

reads
dx — _ _ —
S =xx(l -x)(-o+I1+32x—1)),
& = u(1—x) = BST - S,
dr, B
— = BSI—(ny + I,
dI
- =ml —(ny + i,
%:”Yln—1_(””/+li)lna
where I =31, .

As a further extension, we include a transmission forcing term that oscillates seasonally. This can
be used to account for factors such as changing contact rates among school children (20, 21). We

adopt the functional form B(f)= <pf>(1+a cos(zTH’ )), with parameters 7 =1, a = 0.1 and

< B > equal to the original transmission rate.

Section S4. Critical slowing down indicators for mathematical model and empirical data.
For the variance and lag-1 autocorrelation indicators, to adjust for non-stationarity caused by
long-term changes in the total number of Twitter users, we smoothed the time series for both the
stochastic model and the empirical data using a Nadarya Watson estimator with Gaussian kernel
at a bandwidth of 10%, selected based on Silverman’s rule of thumb (22). We then subtracted

the smoothed time series from the raw time series to generate a detrended (residual) time series.


https://paperpile.com/c/rD6tNB/YuFi
https://paperpile.com/c/rD6tNB/PVvF+4yQl
https://paperpile.com/c/rD6tNB/YuFi
https://paperpile.com/c/rD6tNB/bmJ6+PYYo
https://paperpile.com/c/rD6tNB/DJT1o

For the coefficient of variation indicator, it is not necessary to use the residual time series since
the indicator is already normalized by the mean. The Kendall tau rank correlation coefficient

(23) was used to measure trends in indicators before and after the critical transition.

In the mathematical model, the variance and lag-1 autocorrelation (AC) of the residual time
series and the coefficient of variation of the raw time series were computed (24, 25) using a
rolling window of width 20 years. Figures 2-4 show the resulting time series of the three
indicators averaged over 500 realizations with different random number seeds, as well as two
standard deviations over the 500 realizations, for the two types of risk evolution curves w(¥).
Note that these standard deviations do not correspond to hypothesis testing but rather as a gauge
of stochastic variability in the model dynamics. All analyses were conducted in R using the

earlywarnings R library (26).

The procedure for detecting critical slowing down in the Twitter and Google Trends datasets was
identical to that used in the model simulations except that the Kendall tau rank correlation
coefficient was computed separately for pre- and post-outbreak sections, where pre-outbreak was
defined as before January 22, 2015 and post-outbreak was defined as after February 14, 2015
(thereby removing the Disneyland online social media peak). The same settings were used for
the sensitivity analyses except where otherwise noted. p-values were computed and appear in
figure subpanels. Detrending and computation of the Kendall tau rank coefficient were

conducted in Python (24), and computation of indicators were conducted in R.

Section S5. Sentiment analysis of tweets. For both GPS and Location Field datasets, the
sentiment of each tweet was classified into one of three mutually exclusive categories of
pro-vaccine, anti-vaccine, or “other”. A tweet was considered to be pro-vaccine if the content of
the tweet suggested the tweeter had a positive sentiment towards vaccines. This could have
included information about their actions, feelings, or opinions toward vaccines or the diseases
they prevent. For instance, these tweets were classified as pro-vaccine: “Get your children

vaccinated people. #WhatGetsMeMad”; “The isolated measles outbreaks could be so much


https://paperpile.com/c/rD6tNB/sF4nV
https://paperpile.com/c/rD6tNB/xLeuL+vaB9z
https://paperpile.com/c/rD6tNB/wMNqb
https://paperpile.com/c/rD6tNB/xLeuL

worse if people just stop vaccinating their kids. People die from this, it's not a game”; “Baby well
check and vaccinations today. Poor lil guy but he's happy now!”. A tweet was considered to be
anti-vaccine if the content of the tweet suggested the tweeter had a negative sentiment towards
vaccines. This could have included information about their actions, feelings, or opinions toward
vaccines or the diseases they prevent, including actively minimizing or dismissing the dangers of
the infection. The following tweets were classified as anti-vaccine, for instance: “I am at loss as
to what is happening, the lid is blown on vaccines as a scam, a money maker, harming people
more then helping, FOI proves it”; “Who cares if I didn't vaccinate my daughter? It's not your
problem it's not your child, it's MY child and my belief”, “Did You Know? Vaccinations are Not
required to attend school. You are being Lied to. #NoShotsNoSchoolNotTrue”. “Other”
included any tweet that is neither clearly pro-vaccine or anti-vaccine. These included ambiguous
or irrelevant, as well as objective news headlines that suggest the sentiment of the tweeter is
neutral or not known. Examples of “other” include “Johnny didn't get measles @midnight
#BecauselDie”, “"@HuffingtonPost: Sorry, Disney's new princess Elena probably doesn't count
as Latina http://t.co/ggHYEMG6uV2"#stop the measles outbreak”, “I've been exposed to the
measles. #dayshift #mybossreadsmytweets (@ San Francisco General Hospital Emergency
Room)”; “Reports from the @CDCgov show last year, the nation saw 644 measles cases in 27
states. @wics_abc20 @foxillinois”; “Wow that hpv vaccine will be the death of me”. Many
tweets included a mention of a news headline. If there was some sensationalist, motivational or
emotion-eliciting words in the headline or if the tweeter commentated on the information, or was
twisting or misinterpreting facts, it was classified as either pro-vaccine or anti-vaccine according
to the sentiment. For instance, this tweet was classified as pro-vaccine: “@thehill: Chris
Christie: Parents should have 'measure of choice' on vaccinating children:
http://t.co/E9JR0YdZm2%eU. No!you ignoramus”, while this tweet was classified as
anti-vaccine: “Austrian study demonstrates how vaccinated children have more disease, by

@SECRETSOFTHEFED http://t.co/ZFABxDvmfM.”

For the GPS dataset, Amazon Mechnical Turk (27) was used to classify the sentiment of tweets.

The total number of MTurk crowdworkers was 256, and 3 workers were assigned to classify the


http://t.co/E9jRoYdZm2%E2%80%B0U
http://t.co/ZFABxDvmfM
https://paperpile.com/c/rD6tNB/2BZwy

sentiment of each tweet. We defined complete agreement as when all the three crowd workers
agree on a particular option for a particular tweet; partial agreement as when at least two crowd
workers agree on a particular option and just one disagrees; and complete disagreement as when
all the three crowd workers submit three different options for a particular tweet. Workers were
in complete agreement in 57.9% of tweets, in partial agreement for 39.5% of tweets, and in
complete disagreement in 2.6% of tweets. In cases of partial agreement, we assigned the
sentiment of the tweet to be the sentiment assigned by the majority of the workers. In the case of
complete disagreement, the sentiment of the tweet was assigned to the “other” category. This
procedure identified 10,926 pro-vaccine tweets and 2,136 negative tweets. The remaining 14,844

were classified as “other”.

For the Location Field dataset, the number of tweets was considerably larger, therefore machine
learning was used to classify the sentiment of the tweets. The tweets were annotated according to
sentiment using a linear support vector machine (28) trained on a data set of 75,000 random
vaccine related tweets classified using MechTurk using the same methodology that was used for
sentiment classification of the GPS dataset (see above). Only tweets where there was unanimous
agreement between the three workers who classified each tweet were used. An equivalent
number of tweets was used from each sentiment category (positive, negative, and neutral). The
classifier had precision scores of [0.80, 0.90, 0.79] and recall scores of [0.83, 0.82, 0.82] for
negative, neutral, and positive tweets respectively. The algorithm generated 660,477 negative
US tweets; 883,570 positive US tweets; 483,636 US neutral tweets; 101,683 negative California

tweets, 112,741 positive California tweets; and 59,030 California neutral tweets.

Section S6. Critical slowing down in an expanded model. To back the argument that critical
slowing down (CSD) in online social media may be used as a proxy for CSD in vaccine
sentiment amongst the general population, we demonstrate CSD in an expanded model with
compartments that could represent social media activity. Consider an additional variable Y that
is some measure of online activity with regards to positive vaccine sentiment. For example ¥

could represent the frequency of pro-vaccine tweets or pro-vaccine users. Assuming that


https://paperpile.com/c/rD6tNB/2Qpy

dynamics in Y are driven by the sentiment of the general population (x ) and are proportional to
the net payoff of being pro vs. anti-vaccination ( AE ), we propose the generalized dynamics

& =F(x,Y)AE. [S1]
The net payoff AE =— o(f) + 1+ 8(2x — 1) is derived in Section S3 and F'(x, Y) is some function
that represents the unknown interplay dynamics between online social media Y and the sentiment
of the general population x. This evolution equation for Y is then coupled to the original system
given in Egs. [1-3] of the main text. Note that the current setup assumes the impact of behaviour
and opinion in the general population influences tweet sentiment (via the x dependence in [S1]),
but the influence of twitter sentiment back on general population behaviour is much weaker (and
so the original system remains as is). This assumption of unidirectional influence is supported by
the observation that only a relatively small proportion of the population uses Twitter to regularly
express views on vaccination (see SI Appendix: Section S2 for data on number of US and

Canadian tweets).

For some fixed ® <d (close to the tipping point) we may assume that the expanded system sits
in some quasi-stationary state (stationary on a fast time-scale whereby evolution of the risk
parameter ® can be assumed constant). In accordance with the disease-free equilibrium of the
original model, the adjusted stable state is z* = (0, 0, 1, Y™) for some pro-vaccine tweet
count Y™ . This imposes the conditions

F(1,Y")=0 [S2]

‘;—’;|(1,Y*)<0 [S3]
which ensure stationarity [S2] and stability [S3] of z* . To determine whether CSD occurs in the
variable Y near the tipping point ® = &, we incorporate stochasticity into the model by adding a
Gaussian white noise (GWN) term to each component of the system. The state of the system
Z =(S, I, x, Y ) then evolves according to the stochastic differential equation

dz = f(z)dt + BAW (1) [S4]

where f constitutes the deterministic dynamics given in Eqns. [1-3,S1], B = diag (a),a,,as3,a,)

is the diagonal matrix containing the noise amplitudes a;, and d W (f)is a vector of independent



incremental Wiener processes that generate the GWN. For small noise, dynamics about the
stable state z* are well approximated by the linearization

dz = Jdt + BdW (1) [S5]
where J is the Jacobian matrix of fevaluated at z* . This may readily be computed as

— 0 —pt U]
0 —(v+ p) 0 ]
il 0 —k{d — w) ]
] 0 8d —w)  —al(d —w)

J=

where

_ OF
B=%lary

0 == SFlor
The eigenvalues of J determine the stability of the equilibrium z* . They are given by A, =—p,
A ==(y+tn), A=k —-0), A, =6 —n) and are all negative in the pre-tipping regime (
® < 9) confirming the stability of z*. Statistical properties of the fluctuations about z* may be
obtained analytically from S5, given that it takes the form of an Ornstein-Uhlenbeck Process
(29). The covariance matrix X of the fluctuations satisfies the continuous Lyapunov equation

JE+3JT+BBT =0

which may be solved using elementary matrix techniques (30). Reading off the diagonal

elements give us the variances for each state variable. In particular,

a,’ as® ( B )
2000—®)  2k(d—®) ‘N ok(d—w)ta)

2

Var(Y )=
which diverges as the tipping point is approached (6 — ®) , indicating that the new variable Y

does indeed undergo CSD and should provide the relevant early warning signals.
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Figure S1: Critical slowing down in time series of pro-vaccine tweets before and after the
Disneyland measles outbreak, weekly bins for data. (a-d) Variance, (e-h) lag-1
autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i) US GPS (b.f,j) US
Location Field, (¢,g,k) California Location Field data, and (d,h,l) mathematical model. Also
displayed are Kendall tau rank correlation coefficients before (1 ) and after (7 ) the Disneyland
online peak, with p-values in parentheses. Window width used to compute rolling averages is
indicated by line intervals. Shaded region in data panels indicates time period of the outbreak.
Model panels show indicators averaged across 500 stochastic model realizations (black), two
standard deviations of the 500 realizations (shaded), and 10 example realizations (colored lines).
See Methods and SI Appendix: Sections S3, S4 and S5 for further details.

14



Variance

uUs.

GPS Data

“|r=0.88
(<0.01)
7=-0.96

_(<0.01)

—

H
T T 1

0.4 1

0.2

Lag-1 AC

0.0

e

7=0.30
(<0.01)

7=-0.25

(0.02)

15—

1.0 1

C.v.

0.5

0.0

— E
T T T T T

7=-0.07

(0.31)

7=-0.23NANM

(0.03)

l—{ H

A

T
12

T T T T
13 '14 '15 '16
Date

u.s.
Location Field Data

2000 4 4 \\1‘

7=0.93
(<0.01)

1000 4 1=-0.67
(<0‘01)rj

044 f

0.2 47=-0.55
— H ‘h
0.0

7=-0.10
J0.13)

7=-0.49
J(<0.01)

'_{ H

/LL\

0.25

0.00 -

12 '13 '14 '15 '16
Date

California
Location Field Data

400 q ¢
7=0.95
(<0.01)

200 - 7=-0.86
(<0.01)

049
7=-0.43
(<0.01)

0.2 47=-0.49
(<0.01)

'_{ H

0.75 4 k
7=-0.08

0.50 4(0.25)
7=-0.62

0.25 (<0.01)

'_{ H
000 —T—T—T—T—T1

12 '13 '14 '15 '16
Date

0.00010

0.00005

0.00000

0.75

0.50

0.25

0.00

0.75

0.50

0.25

0.00

Model

—
1 T 1 1

0 25 50 75 100

Year

Figure S2: Critical slowing down in time series of anti-vaccine tweets before and after the
Disneyland measles outbreak, weekly bins for data. (a-d) Variance, (e-h) lag-1
autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i) US GPS (b.f,j) US
Location Field, (¢,g,k) California Location Field data, and (d,h,l) mathematical model. Also
displayed are Kendall tau rank correlation coefficients before (1 ) and after (7 ) the Disneyland
online peak, with p-values in parentheses. Window width used to compute rolling averages is
indicated by line intervals. Shaded region in data panels indicates time period of the outbreak.
Model panels show indicators averaged across 500 stochastic model realizations (black), two
standard deviations of the 500 realizations (shaded), and 10 example realizations (colored lines).

See Methods and SI Appendix: Sections S3, S4 and S5 for further details.
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Figure S3: Critical slowing down in time series of pro-vaccine tweets before and after the
Disneyland measles outbreak, rolling window width is 35% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US GPS (b.f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,l)
mathematical model. Also displayed are Kendall tau rank correlation coefficients before (t ) and
after (7 ) the Disneyland online peak, with p-values in parentheses. Window width used to
compute rolling averages is indicated by line intervals. Shaded region in data panels indicates
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further
details.
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Figure S4: Critical slowing down in time series of pro-vaccine tweets before and after the
Disneyland measles outbreak, rolling window width is 20% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US GPS (b,f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,l)
mathematical model. Also displayed are Kendall tau rank correlation coefficients before (t ) and
after (T') the Disneyland online peak, with p-values in parentheses. Window width used to
compute rolling averages is indicated by line intervals. Shaded region in data panels indicates
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further
details.
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Figure S5: Critical slowing down in time series of pro-vaccine tweets before and after the
Disneyland measles outbreak, rolling window width is 10% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US GPS (b,f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,l)
mathematical model. Also displayed are Kendall tau rank correlation coefficients before (t ) and
after (T') the Disneyland online peak, with p-values in parentheses. Window width used to
compute rolling averages is indicated by line intervals. Shaded region in data panels indicates
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further
details.
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Figure S6: Critical slowing down in time series of anti-vaccine tweets before and after the
Disneyland measles outbreak, rolling window width is 35% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US GPS (b,f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,l)
mathematical model. Also displayed are Kendall tau rank correlation coefficients before (t ) and
after (T') the Disneyland online peak, with p-values in parentheses. Window width used to
compute rolling averages is indicated by line intervals. Shaded region in data panels indicates
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further
details.
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Figure S7: Critical slowing down in time series of anti-vaccine tweets before and after the
Disneyland measles outbreak, rolling window width is 20% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US GPS (b,f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,l)
mathematical model. Also displayed are Kendall tau rank correlation coefficients before (t ) and
after (T') the Disneyland online peak, with p-values in parentheses. Window width used to
compute rolling averages is indicated by line intervals. Shaded region in data panels indicates
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further
details.
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Figure S8; Critical slowing down in time series of anti-vaccine tweets before and after the
Disneyland measles outbreak, rolling window width is 10% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US GPS (b,f,j) US Location Field, (¢,g,k) California Location Field data, and (d,h,l)
mathematical model. Also displayed are Kendall tau rank correlation coefficients before (t ) and
after (T') the Disneyland online peak, with p-values in parentheses. Window width used to
compute rolling averages is indicated by line intervals. Shaded region in data panels indicates
time period of the outbreak. Model panels show indicators averaged across 500 stochastic model
realizations (black), two standard deviations of the 500 realizations (shaded), and 10 example
realizations (colored lines). See Methods and SI Appendix: Sections S3, S4 and S5 for further
details.
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Figure S9: Critical slowing down in Google Trends search index before and after the
Disneyland measles outbreak, rolling window with is 35% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US searches for “measles” (b,f,j) US searches for “MMR” (¢,g,k) California searches for

“measles’

’, and (d,h,l) California searches for “MMR”. Also displayed are Kendall tau rank

correlation coefficients before (1) and after (7T') the Disneyland online peak, with p-values in
parentheses. Window width used to compute rolling averages is indicated by line intervals.
Shaded region indicates time period of the outbreak. See Methods and SI Appendix: Section S4

for further details.
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Figure S10: Critical slowing down in Google Trends search index before and after the
Disneyland measles outbreak, rolling window with is 20% the width of the dataset. (a-d)
Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US searches for “measles” (b,f,j) US searches for “MMR” (¢,g,k) California searches for
“measles”, and (d,h,I) California searches for “MMR”. Also displayed are Kendall tau rank
correlation coefficients before (1) and after (7T') the Disneyland online peak, with p-values in
parentheses. Window width used to compute rolling averages is indicated by line intervals.
Shaded region indicates time period of the outbreak. See Methods and SI Appendix: Section S4

for further details.
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Figure S11: Critical slowing down in Google Trends search index before and after the

Disneyland measles outbreak, rolling window with is 10% the width of the dataset. (a-d)

Variance, (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation (C.V.) indicators for (a,e,i)
US searches for “measles” (b,f,j) US searches for “MMR” (¢,g,k) California searches for
“measles”, and (d,h,I) California searches for “MMR”. Also displayed are Kendall tau rank

correlation coefficients before (1) and after (7T') the Disneyland online peak, with p-values in

parentheses. Window width used to compute rolling averages is indicated by line intervals.
Shaded region indicates time period of the outbreak. See Methods and SI Appendix: Section S4

for further details.
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Figure S12: Predicted indicator trends for baseline model compared to extended model

with seasonal variation in transmission rate and Erlang-distributed infectious period.
Baseline mathematical model predictions for (a,e,i) x time series and (c¢,g,k) 1-x time series, and
extended model predictions for (b,f,j) x time series and (d,h,l) 1-x time series. Indicators shown

are (a-d) variance; (e-h) lag-1 autocorrelation, and (i-1) coefficient of variation. Panels show

indicators averaged across 500 stochastic model realizations (black), one standard deviation of
the 500 realizations (shaded), and 10 example realizations (colored lines). Perceived risks

increases and decreases as in Figures 3 and 4; dashed line shows time of maximum perceived

risk. See Methods and SI Appendix: Sections S3 and S4 for further details.
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Figure S13: Sensitivity analysis on model parameter values for all three indicators.

(a,b) Variance; (c,d) lag-1 autocorrelation, and (e,f) coefficient of variance of the x time series at
a range of possible parameter values when (a,c,e) perceived risk o increases linearly beyond
o=[1, as in Figure 2 and (b,d,f) perceived risk ® increases linearly to w=[] and then declines, as
in Figures 3 and 4. Black line shows mean value of 500 stochastic realizations; dotted vertical
line shows location of maximal perceived risk; shaded region shows one standard deviation of
the 500 stochastic realizations using parameter values sampled from triangular distributions.
Epidemiological parameters, as well as the sampling rate &, were drawn from a triangular
distribution ranging from half to three halves of the baseline value. The time of onset of the risk
evolution curve was also sampled from a triangular distribution. For the linear case, the onset
was drawn from a triangular distribution ranging from 8 to 12 years. Likewise, the time of onset
of the triangular curve was drawn from a triangular distribution ranging from 20 to 40 years. The
triangular curve remained symmetric about the t = 50 line, attaining a value of & when t = 50.
Double-headed arrow denotes length of rolling window used for computing lag-1 AC. Further
details appear in SI Appendix: Section S3 and S4.
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Figure S14: Adaptive dynamics in extended model where perceived risk obeys dw/dt = a +
bI(?), in nine model realizations, variance indicator. Each set of three subpanels shows the
results of a single realization. In each set, top subpanel shows time evolution of w(?) (solid line)
and location of critical transition (dashed line); middle subpanel shows vaccine uptake (blue) and
infection prevalence (red); bottom subpanel shows variance (green) of x time series computed
using a rolling window of width indicated by arrows. See SI Appendix: Section S3 and S4 for
details on model simulation and computation of variance. a=1x107*, b=-0.2.
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Figure S15: Adaptive dynamics in extended model where perceived risk obeys dw/dt = a +

bI(?), in nine model realizations, lag-1 autocorrelation indicator. Each set of three subpanels
shows the results of a single realization. In each set, top subpanel shows time evolution of w(z)

(solid line) and location of critical transition (dashed line); middle subpanel shows vaccine
uptake (blue) and infection prevalence (red); bottom subpanel shows lag-1 autocorrelation
(green) of x time series computed using a rolling window of width indicated by arrows. See SI
Appendix: Section S3 and S4 for details on model simulation and computation of lag-1 AC.

a=1x10", b=-0.2.
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Figure S16: Adaptive dynamics in extended model where perceived risk obeys dw/dt = a +
bI(7), in nine model realizations, coefficient of variation indicator. Each set of three
subpanels shows the results of a single realization. In each set, top subpanel shows time
evolution of w(¢) (solid line) and location of critical transition (dashed line); middle subpanel
shows vaccine uptake (blue) and infection prevalence (red); bottom subpanel shows coefficient
of variation (green) of x time series computed using a rolling window of width indicated by
arrows. See SI Appendix: Section S3 and S4 for details on model simulation and computation of
coefficient of variation. a=1x107*, b=-0.2.
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Figure S17: Model dynamics away from the critical transition do not show critical slowing
down. (a) Vaccine uptake (blue) and infection prevalence (red) when perceived risk is set at
®=1x107*; (b) variance; (¢) lag-1 autocorrelation; and (d) coefficient of variation of time periods
40 years leading up to 50 different outbreaks in model simulations. Mean is denoted by black
line and shaded regions represent one standard deviation over the 50 samples. Double-headed
arrows denotes width of rolling window used to compute lag-1 AC and variance. Other
parameter values and details of model simulation and indicator computation appear in SI
Appendix: Sections S3 and S4.
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