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ABSTRACT

Political science researchers typically conduct an idiosyncratic search of possible

model configurations and then present a single specification to readers. This ap-

proach systematically understates the uncertainty of our results, generates fragile

model specifications, and leads to the estimation of bloated models with too many

control variables. Bayesian model averaging (BMA) offers a systematic method for

analyzing specification uncertainty and checking the robustness of one’s results to

alternative model specifications, but it has not come into wide usage within the dis-

cipline. In this paper, we introduce important recent developments in BMA and

show how they enable a different approach to using the technique in applied social

science research. We illustrate the methodology by reanalyzing data from three re-

cent studies using BMA software we have modified to respect statistical conventions

within political science.

A poster based on an earlier version of this paper was presented at the Society for Political Methodology Summer

Conference, State College, PA, July 18–21, 2007. We thank James Adams, Benjamin G. Bishin, David W. Brady,

Brandice Canes-Wrone, John F. Cogan, Jay K. Dow, James D. Fearon, and David D. Laitin for sharing their data

and providing assistance with our replications of their work. We also thank John H. Aldrich, Michael C. Brady,

Merlise Clyde, Josh Cutler, Scott de Marchi, Andrew Gelman, Daniel J. Lee, Efrén O. Pérez, Jill Rickershauser,
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1. INTRODUCTION

Uncertainty about the “correct” model specification can be high
in political science research. Classical methods offer researchers
little guidance and few useful tools for dealing with this uncer-
tainty. As a result, scholars often engage in haphazard searches of
possible model configurations, a practice that can lead to incorrect
inferences, fragile reported findings, and publication bias.

A better approach is Bayesian model averaging (BMA), which
was introduced to political scientists by Bartels (1997) but has not
come into wide use in the discipline. As a result, “a remarkable
evolution” in BMA methodology has been completely overlooked
(Clyde and George 2004). In this paper, we explain how BMA
can help applied researchers to ensure that their estimates of the
effects of key independent variables are robust to a wide range of
possible model specifications.

Our presentation follows in four stages. First, we review exist-
ing approaches to addressing model uncertainty and discuss their
limitations. Next, we summarize recent developments in BMA
methodology and advocate an approach to the technique that dif-
fers substantially from Bartels (1997). To facilitate usage of BMA,
we have developed modified software code that addresses sev-
eral obstacles to its use in applied social science research. We then
illustrate our approach by renalyzing data from three recent arti-
cles: the Adams, Bishin, and Dow study of proximity and direc-
tional voting in U.S. Senate elections (2004), Canes-Wrone, Brady,
and Cogan’s study of the electoral consequences of extremist roll-
call voting in the U.S. House (2002), and the Fearon and Laitin
analysis of civil war onset internationally (2003). Finally, we con-
clude with words of caution about appropriate applications of the
technique.

2. THE PROBLEM OF MODEL UNCERTAINTY

Political scientists who analyze observational data frequently en-
counter uncertainty about what variables to include in their sta-
tistical models. A typical researcher develops theory about a few
key explanatory variables and then must must choose from a set
of possible control variables over which she has much weaker
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prior beliefs. In such cases, the appropriate set of control vari-
ables is often highly uncertain. As a result, researchers frequently
estimate a variety of models before selecting one to include in the
published version of their research.

This practice leads to a number of pathologies. First, it under-
states our uncertainty about the effects of the variables of interest.
Basing inferences on a single model implicitly assumes that the
probability that the reported model generated the data is 1, an as-
sumption that is surely mistaken. Second, some researchers may
search the model space until they find a specification in which a
key variable is statistically significant, a practice that has led to
indications of publication bias in top journals (Gerber and Mal-
hotra 2008). As a result, reported results are often fragile to slight
variations in model specification. Finally, the perceived neces-
sity to control for large numbers of potential confounds has led to
bloated specifications that decrease efficiency without necessarily
decreasing omitted variable bias (Clarke 2005).

Addressing this problem is difficult because classical methods
offer few tools for handling model uncertainty. Researchers who
wish to test the robustness of their findings often estimate a hand-
ful of alternative models to see whether the sign and/or signifi-
cance level of key coefficients change. However, these tests are
conducted in a haphazard manner. In addition, frequentist hy-
pothesis testing offers no method for resolving conflicting find-
ings across alternative specifications. What is one to infer if a
variable is significant in some specifications, but fails to pass tra-
ditional thresholds in others?

Analysts may also try more formal methods to try to substan-
tiate the models they report. Typically, researchers either com-
pare non-nested models using frequentist tests such as the Cox
and Vuong tests, select models based on a model fit statistic that
penalizes complexity such as the Bayesian Information Criterion,
or compare nested models using likelihood-ratio tests.1 Method-
ological objections can be raised concerning the limitations of each
of these techniques (Clarke 2001). But at a more philosophical
level, we believe that the enterprise of searching for a “best” model

1Previously, some researchers resorted to stepwise variable selection in order to find the “best”
model when uncertainty is pervasive, but it is now commonly understood that this technique leads
to upward bias in R2 and estimated coefficients, downward bias in standard errors, and incorrect
p-values (Harrell 2001, 56-57).

2



is inappropriate to most political science data, which rarely yield
clear proof that one specification is the “true model.”

In addition, both approaches described above share a deeper
underlying problem—the size of the potential model space. A
model with p independent variables implies 2p possible specifica-
tions. Uncertainty about even a few control variables thus makes
it extremely difficult to ensure robustness to alternative specifica-
tions within a frequentist framework. Given the relatively large
model space associated with even a modest number of variables,
model uncertainty becomes a serious issue. At present, there is no
way to combine the results of multiple hypothesis tests into more
general measures of uncertainty over coefficients and/or models
using frequentist techniques. 2

3. BAYESIAN MODEL AVERAGING: AN OVERVIEW

A more comprehensive approach to addressing model uncertainty
is Bayesian model averaging, which allows us to assess the ro-
bustness of results to alternative specifications by calculating pos-
terior distributions over coefficients and models. BMA came to
prominence in statistics in the mid-1990s (Madigan and Raftery
1994; Raftery 1995; Draper 1995) and has expanded into fields
such as economics (Fernandez, Ley and Steel 2001), biology (Ye-
ung, Bumgarner and Raftery 2005), ecology (Wintle et al. 2003),
and public health (Morales et al. 2006). (The state of research
in the field is most recently summarized in Hoeting et al. (1999),
Clyde (2003), and Clyde and George (2004).)

BMA is particularly useful in three specific contexts that we
illustrate in our empirical examples below. First, BMA can be
helpful when a researcher wishes to assess the evidence in favor
of two or more competing measures of the same theoretical con-

2The problems with idiosyncratic model specifications described above are related to the prob-
lem that King and Zeng (2006) call “model dependence,” which Ho et al. (2007) recommend ad-
dressing by estimating the treatment effect of a single binary variable. Under this approach, re-
searchers should drop observations for which appropriate counterfactuals are missing and use
non-parametric matching to improve covariate balance. While there are many good reasons to
recommend this approach, it may not always be appropriate. For instance, some researchers are
interested in continuous treatment variables or more than one independent variable. Others may
have substantive reasons to prefer to estimate the most robust possible model for a full sample
rather than dropping observations. Finally, some researchers will lack the sample size necessary to
get good matches on relevant covariates. In all of these cases, BMA is a potentially useful tool for
improving the robustness of reported results.
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cept, particularly when there is also significant uncertainty over
control variables. Second, when there is uncertainty over control
variables, researchers can use BMA to test the robustness of their
estimates more systematically than is possible under a frequen-
tist approach. Finally, BMA may also be valuable for researchers
who wish to estimate the effects of large numbers of possible pre-
dictors of a substantively important dependent variable (though
there are important reasons to be cautious about the conclusions
one can draw from such an approach). As we discuss below, re-
cent methodological innovations have increased the usefulness of
BMA in all of these contexts.

3.1. A brief review of BMA

We first briefly review the basic theory of BMA in a linear regres-
sion context (following Clyde 2003), which provides the necessary
vocabulary for the discussion of innovations in BMA methodol-
ogy in the next section.3 Let X denote the n × p matrix of all
the independent variables theorized to be predictors of outcome
Y.4 Standard analyses would assume that Y = Xβ + ε, where
ε ∼ N(0, σ2 I). However, we might have uncertainty about which
of the q = 2p model configurations from the model space M =
[M1,M2, . . .Mq] is the “correct” model.

The purpose of BMA is to explicitly incorporate this uncer-
tainty into our model and therefore our inferences. The standard
BMA approach represents the data as coming from a hierarchical
mixture model. We begin by assigning a prior probability distri-
bution to the model parameters β and σ2 and the models Mk. The
model, Mk, is assumed to come from the prior probability dis-
tribution Mk ∼ π(Mk) and the vector of model parameters is
generated from the conditional distributions σ2|Mk ∼ π(σ2|Mk)
and βω|σ2,Mk ∼ π(βω|Mk, σ2), where Ω = ω1, . . . , ωp repre-
sents a vector of zeroes and ones indicating the inclusion (or ex-
clusion) of variables in model Mk.

Using this notation allows us parameterize the data generating
3The approach described here extends naturally to generalized linear models. For the purposes

of this article, we will assume the functional form is known and that the standard linear regres-
sion assumptions are satisfied. Researchers who are concerned about serious violations of model
assumptions should resolve these issues before employing BMA (or not use BMA at all).

4For the purposes of exposition, the constant is ignored in this discussion, which is equivalent
to assuming that all variables in X have been centered at their means.
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process using the following conditional model: Y|βω, σ2,Mk ∼
N(Xωβω, σ2 I). The marginal distribution of the data under model
Mk can therefore be written as

p(Y|Mk) =
∫ ∫

p(Y|βω, σ2,Mk)π(βω|σ2,Mk)π(σ2|Mk) dβω dσ2.

(1)
The posterior probability of modelMk

5 is

p(Mk|Y) =
p(Y|Mk)π(Mk)

q
∑

k=0
p(Y|Mk)π(Mk)

. (2)

Equation 2 provides a coherent way of summarizing model un-
certainty after observing the data. For instance, we can easily de-
rive the expected value for the coefficient βk after averaging across
the model spaceM:

E(βk|Y) =
q

∑
k=0

p(Mk|Y)E(βk|Mk, Y). (3)

E(βk|Y) represents the weighted expected value of βk across ev-
ery possible model configuration (with the weights determined
by our priors and the performance of the models).

3.2. Publicly available BMA software

The difficulties associated with implementing the BMA approach
are primarily computational. Calculating any statistic of interest
involves solving or approximating p(Mk|Y), which is often an
intractable high-dimensional integral, for all q = 2p models un-
der consideration. Given modest numbers of plausible covariates,

5In practice, the calculations of these quantities use Bayes factors (Jeffreys 1935, 1961), a method
for assessing the evidence in favor of two competing models, to compare each model with either
the null model or the full specification (see, e.g.,Kass and Raftery 1995). The reason for doing so
is the appealing simplicity of calculating the Bayes factor for each possible model against some
base model, Mj, rather than directly calculating the posterior probability for each model. Using
Bayes’ rule, we can show that the posterior odds of some modelMk toMj can be calculated as
p(Mk |Y)
p(Mj |Y) = p(Y|Mk)

p(Y|Mj)
π(Mk)
π(Mj)

, which is the Bayes factor. As Clyde and George (2004, 82) point out, the

posterior model probabilities in Equation 2 above can then be expressed using only Bayes factors
B[k : j] and prior odds O[k : j]: p(Mk |Y) = B[k:j]O[k:j])

∑
k

B[k:j]O[k:j] .
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even standard MCMC approaches become increasingly impracti-
cal as the model space expands. These computational difficulties
led many early researchers to adopt simplifying assumptions and
techniques that made BMA analyses more tractable but required
significant tradeoffs.

Since then, BMA computation has been radically improved.
The combination of increased computing power, the development
of more analytically tractable prior specifications, and the distri-
bution of the BMA and BAS packages for R have made these tech-
niques far more accessible. Nonetheless, both packages still have
important limitations. We have therefore modified them for use
in applied social science research (as discussed below) and will
release our code for public use.6

4. A NEW APPROACH TO BMA IN POLITICAL SCIENCE

Since Bartels (1997) first introduced Bayesian model averaging to
political science, applications of the technique within the disci-
pline have been surprisingly rare. Gill (2004) provides a more
recent overview of the approach, but the only published appli-
cations we have been able to locate are Bartels and Zaller (2001),
Erikson, Bafumi and Wilson (2001), Zaller (2004), Imai and King
(2004), and Geer and Lau (2006). However, the BMA literature has
developed substantially since 1997 and new software programs
have become available. In this section, we discuss limitations of
previous research (including the analysis in Bartels 1997, the most
prominent presentation of the technique in the field), and propose
a revised approach to using BMA in applied research.

6Both packages are freely modifiable under the GNU General Public License. The better known
of the two is the BMA package (Raftery, Painter and Volinsky 2005; Raftery et al. 2009), which
covers linear regression, generalized linear models, and survival models. While the package is
very useful, it has several important limitations, including an ad hoc model selection criterion that
may bias posterior estimates and an exclusive reliance on the Bayesian Information Criterion (BIC)
prior (Clyde 1999). Clyde’s Bayesian Adaptive Sampling (BAS) package (Clyde 2009) improves on
the BMA package in several important respects—it uses a stochastic model search algorithm that
outperforms naı̈ve sampling without replacement and MCMC model averaging algorithms in a
variety of contexts (Clyde, Ghosh and Littman 2009); it can search very large model spaces; and it
offers a variety of prior specification options. However, BAS can only estimate linear regression
models at the present time. We therefore recommend that applied analysts use the BAS package
for regression and the BMA package for generalized linear models and survival models.
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4.1. Interpreting posterior distributions using coefficient plots

Previous presentations of BMA in political science have placed a
disproportionate emphasis on posterior summary statistics that
can be reductive or misleading. For instance, Bartels relies almost
exclusively on simple hypothesis tests using posterior means and
standard deviations. But as Erikson, Wright and McIver (1997)
point out, Bartels computes t statistics for model-averaged coef-
ficients that are invalid given the often irregular shapes of BMA
posterior distributions. Bartels, who initially described the t statis-
tics as for “descriptive purposes only” (1997, 654), later conceded
this point (1998), noting that “the posterior distribution of each
parameter under the assumptions in my article is a mixture of
normal distributions. . . and this mixture of normal distributions
will not, in general, be a normal distribution” (18).

Rather than relying on summary statistics, the best way to un-
derstand the properties of posterior distributions is to plot them
for each parameter, which is now trivial with publicly available
software. Figure 1 illustrates what a coefficient posterior plot
looks like. These plots allow us to answer two distinct questions:

1. Does the variable contribute to the model’s explanatory power?
(i.e. what is the posterior probability of all models that in-
clude this variable?)

2. Is it correlated with unexplained variance when it is included?
(i.e. what is the conditional posterior distribution assuming
that the variable is included?)

[Figure 1 about here.]

The vertical line located at 0 on the x-axis represents the cumu-
lative posterior probability of all models that exclude the relevant
variable. One minus this value is the posterior probability of in-
clusion, p(βk 6= 0|Y), which can be used to answer question 1
above. The conditional posterior distribution, which is also in-
cluded in the plot, represents the estimated value of the coefficient
in the models in which it is included weighted by the likelihood
of those models, p(β|β 6= 0, Y). The location and density of this
distribution allows us to answer question 2 above.
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A related point is that BMA encourages researchers to be more
clear about their statistical hypotheses. In practice, many scholars
may wish to distinguish between the conditional posterior distri-
bution and the posterior probability of inclusion depending on
their goals and the nature of the data. For instance, some schol-
ars are primarily interested in whether an independent variable
is strongly correlated with a dependent variable across a range
of potential model configurations. In such cases, BMA allows re-
searchers to calculate p(β > 0|β 6= 0, Y) or p(β < 0|β 6= 0, Y)
for the conditional posterior distribution, an option that we have
added to the BMA and BAS packages. Alternatively, a scholar
who is more interested in prediction (say, a scholar of interstate
war) may want to know whether a predictor adds to the explana-
tory power of statistical models for a given dependent variable
(or whether it offers more explanatory power than some alternate
concept). In this context, it might be appropriate to focus on the
posterior probability of inclusion. Finally, other researchers may
wish to consider both metrics and use the combined posterior dis-
tribution p(β|Y).7

4.2. Searching the full model space

A second major difference in our approach is that that we advise
researchers to consider the full set of 2p possible models when
conducting model averaging (excluding those that are theoret-
ically or statistically inappropriate, as described below). Some
early presentations of BMA focused on averaging across very small
subsets of the model space. For instance, in the two examples he
presents, Bartels limits his model averaging to a handful of model
specifications reported in published work, which implicitly places
a zero prior on all other possible models. He concedes that his ap-
proach “can provide only a rough reflection of real specification
uncertainty” but argues that it reflects the “substantive insight”
of researchers (1997, 667-670).

However, putting a non-zero prior probability on only a hand-
7Current practices in the discipline rely heavily on p values, which awkwardly conflate these

two concepts (Gill 1999). Separating them allows for useful distinctions in variable performance.
For instance, it is possible to have variables that are “statistically significant” (i.e., their credible
intervals do not overlap with zero) but have low posterior probabilities of inclusion. Likewise, it
is possible for a variable with a high posterior probability of inclusion to have a model-averaged
credible interval that overlaps with zero due to variation in sign and significance across models.
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ful of models when using BMA is almost always a mistake. Sub-
stantively, it typically will overstate our certainty that the included
models are the only possible choices. In addition, such restric-
tions cripple the greatest strength of BMA—its ability to system-
atically search a model space and present posterior estimates that
incorporate uncertainty in the model specification. Even Erik-
son, Wright and McIver (1997)—the authors of one of the arti-
cles whose models were reanalyzed—dissent, noting that “the
original model averaging literature is unambiguously clear in its
rule that all models involving plausible variables must be consid-
ered.”8 Previously, researchers might have been forced to restrict
the model space due to computational limitations, but the inno-
vations in BMA software discussed above have made it possible
to analyze large numbers of covariates.

4.3. Alternative prior specifications to BIC

In addition, most early BMA research, including Bartels (1997),
approximated Bayes factors using the Bayesian Information Cri-
terion (Raftery 1995, 129-133).9 While this approach was com-
putationally convenient, its consequences were not always desir-
able. For instance, BIC tends to place a relatively high posterior
probability on sparse models (Kass and Raftery 1995; Kuha 2004;
Erikson, Wright and McIver 1997), a model prior that is not al-
ways substantively appropriate. In addition, though advocates of
BIC argue that it is a reasonable approximation of the Bayes fac-
tor under a unit information prior (Raftery 1995, 129-133), Gelman
and Rubin (1995) note that BIC does not correspond to a proper
Bayesian prior distribution (see also Weakliem 1999).

However, other prior specifications are now available to ap-
plied researchers. In conjunction with advances in techniques
for sampling large model spaces, these new priors have allowed
researchers to significantly improve the flexibility and power of
BMA techniques while avoiding shortcuts such as BIC and AIC.10

8Searching such a limited model space may also lead to an unwarranted emphasis on the selec-
tion of the “best” model, which is generally of limited substantive interest.

9The BIC for model Mk compared to the null model M0 is BICk = −2 log(Lk − L0) + p log n
where Lk is the maximized likelihood for Mk and p is the number of parameters in the model.

10While BIC and AIC are not proper Bayesian priors (Gelman and Rubin 1995), we will some-
times refer to them as “priors” for expositional clarity.
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One option in the BAS package that has appealing properties
is Zellner’s g-prior (Zellner 1986), which is formulated as

π(βω|Mk, σ2) ∼ Npω(0, gσ2(X′ωXω)−1) (4)

and
π(β0, σ2|Mk) ∝ 1/σ2 (5)

for some positive constant g where pω represents the number of
predictor variables in the ωth model.11 It yields closed form ex-
pressions for p(Y|Mk) that are rapidly calculable and requires the
choice of only one hyperparameter, simplifying the prior specifi-
cation process. However, this approach requires the analyst to
select a value of g12, which may lead to possible misspecification.

Alternatively, one can place a hyper-prior on g. Here we in-
troduce two such hyper-priors for linear regression, which are
analyzed in Liang et al. (2008) and available for use in the BAS
package. The first, the so-called “hyper-g,” puts the following
hyper-prior on g:

π(g) =
a− 2

2
(1 + g)

a
2 for g > 0. (6)

Liang et al. (2008) use example values of 3 or 4 for a when specify-
ing the hyper-g but state that values of 2 < a ≤ 4 are “reasonable”
(the distribution is proper when a > 2). A related approach is the
Zellner-Siow prior (Zellner and Siow 1980). To create this prior,
we put a Gamma(1/2, n/2) prior on g, which induces a multi-
variate Cauchy prior on βω:

π(βω|Mω, σ2) ∝
∫

N(βω|0, gσ2(X′ωXω)−1)π(g) dg. (7)

Both priors have desirable asymptotic properties and perform well
in simulations (Liang et al. 2008).

How should one choose among the various prior options that
are now available? As noted above, BIC tends to favor parsimo-
nious models, while AIC tends to include more parameters (Kass
and Raftery 1995; Kuha 2004). The hyper-g, and Zellner-Siow pri-
ors will tend to fall somewhere in between. In practice, one’s

11All variables are assumed to be centered at zero in this notation.
12In particular, one can often choose a value for g that corresponds to the AIC and BIC approxi-

mations, although this value may not necessarily be known.

10



choice should depend on the goals of the research project, the na-
ture of the data, and the type of model. However, the method we
advocate—and which we use in our examples below—is to an-
alyze data with respect to multiple priors in order to assess the
sensitivity of one’s results to prior choice.

4.4. Specifying model priors

A related development in BMA methodology involves specify-
ing more flexible priors over models. Per Clyde (2003) and Clyde
and George (2004), we can think of placing a prior distribution on
modelsM1 . . .Mk by treating the indicator variables ω as result-
ing from independent Bernoulli distributions

π(Mk) = γpω(1− γ)p−pω . (8)

This prior is fully specified by the selection of the hyperparameter
γ ∈ (0, 1), which can be thought of as the probability that each
predictor variable is included in the model.

The vast majority of previous presentations have assumed a
uniform distribution over models.13 This assumption implies that
γ = .5 and that the number of parameters is distributed binomial
(q, .5) over the q = 2p models, which means that the expected
number of independent variables in a model is p/2 (Clyde 2003).

However, the assumption of a uniform distribution over mod-
els is not always appropriate (Erikson, Wright and McIver 1997).
The BAS package offers several options for specifying priors over
models that reflect researchers’ understanding of the data gen-
erating process. First, analysts can select a value for γ that cor-
responds to their prior beliefs about the appropriate number of
predictors in the model. Analysts with prior beliefs about the
inclusion of specific variables can also represent γ as a vector
γ = (γ1, γ2, ..., γp), where γi represents the prior probability that
variable i should be included in the model. Finally, a third pos-
sible approach is to put a beta prior on the hyperparameter γ to
reflect the range of complexity we expect in the posterior model
space.

13Bartels does so as well in his main analysis (1997, 669). (He also introduces “dummy-resistant”
and “search-resistant” priors, but these have not come into wide usage and we therefore do not
discuss them further.)
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4.5. Properly handling interaction terms

Finally, it is necessary to adjust BMA usage to account for the
presence of interaction terms, which are frequently employed in
social science data analysis. In his analysis, Bartels averages over
models that vary in whether they include one or more interaction
terms derived from variables of theoretical interest. However, the
coefficient for a constitutive term of an interaction represents the
marginal effect of that variable when the other constitutive term
is equal to zero (Braumoeller 2004; Brambor, Clark and Golder
2006). Combining coefficient estimates of constitutive terms with
estimates of the same coefficients from models that omit the in-
teraction creates an uninterpretable mixture of estimates of two
different quantities.14

We recommend a different approach that is consistent with
contemporary statistical practice. First, if an interaction term is
one of the covariates under consideration, we should avoid aver-
aging over models in which one or more of its constitutive terms
are excluded (Braumoeller 2004; Brambor, Clark and Golder 2006).
To do otherwise assumes that the marginal effect of the excluded
variable is zero. If this assumption is false, the interaction term
will be incorrectly estimated. In addition, if an interaction term
and its constitutive terms are quantities of theoretical interest (rather
than control variables), it is desirable to average within the subset
of models that include the constitutive terms and the interaction
term. The resulting posterior distributions for the interaction and
the constitutive terms will then have consistent conceptual defi-
nitions and can be interpreted properly.

Previously, it was impossible for the applied analyst to restrict
the set of analyzed models in this way without writing new code.
For instance, Erikson, Wright and McIver (1997) express concern
that BMA “does not seem adaptable to models containing mutu-
ally exclusive dummy variables or complicated interaction terms.”

14For instance, the coefficients for state opinion and Democratic legislative strength in the Erik-
son, Wright and McIver data that Bartels reanalyzes represent the marginal effect of those vari-
ables in “individualistic” states when interactions with state political culture indicators from Elazar
(1972) are included (i.e. “individualistic” is the reference category and is therefore excluded). By
contrast, when the interaction terms are omitted from the model, the coefficients for state opinion
and Democratic legislative strength represent their unconditional marginal effects. A similar cri-
tique applies to Bartels’s other example, which reanalyzes models of economic growth in OECD
countries by Lange and Garrett (1985) and Jackman (1987).
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To address this concern, we have modified the BMA and BAS
packages to allow analysts to easily exclude theoretically inappro-
priate models from the averaging process. Using these software
options, analysts can drop models that violate important theoret-
ical or statistical assumptions. For instance, it is possible to drop
all models in which an interaction term or its constitutive vari-
ables are excluded as described above.

5. APPLYING BMA: THREE ILLUSTRATIVE EXAMPLES

In this section, we present three examples of how BMA can be ap-
plied in contemporary political science research using the method-
ological approach described above. Our first example examines
the Adams, Bishin and Dow (2004) study of voting in U.S. Sen-
ate elections, illustrating how BMA can be used to arbitrate be-
tween two possible measures of the same concept (voter utility
from candidate positioning in one dimension). Second, we reana-
lyze the Canes-Wrone, Brady and Cogan (2002) study of the effect
of roll-call extremity on incumbent support in the U.S. House of
Representatives, which illustrates how BMA can be used to test
the robustness of a single predictor against a wide array of al-
ternative specifications including interactions. Our final example
illustrates how BMA can help validate the robustness of one’s sta-
tistical results in a vast model space using data from Fearon and
Laitin’s (2003) analysis of the onset of civil war.

5.1. U.S. Senate voting

We begin with an example that demonstrates how the BMA ap-
proach can help arbitrate between competing predictors. Adams,
Bishin, and Dow (henceforth ABD) use data from the 1988-1990-
1992 Pooled Senate Election Study to “evaluate the discounting
/ directional hypothesis versus the alternative proximity hypoth-
esis” (348). Using both an individual-level model of vote choice
and an aggregate-level model of vote share, they “find a consis-
tent role” for their directional variables, while results for their
proximity variables are weaker and less consistent (368). We fo-
cus here only on their aggregate-level results (see Montgomery
and Nyhan 2008 for a reanalysis of their individual-level results).
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ABD follow the common approach of putting alternative mea-
sures into the same model and basing their inferences on the re-
sulting coefficients—a practice that Achen (2005) refers to as a
“pseudo-theorem” of political science. Unfortunately, as Achen
shows, this practice is likely to lead to incorrect inferences. A bet-
ter approach is to use BMA, which allows us to test competing
measures in a more coherent fashion.15

ABD conduct an OLS analysis in which they predict the per-
centage of the two-party vote received by the Democrat in each
election. They focus on two independent variables of interest,
which they call Democratic directional advantage and Democratic
proximity advantage, and estimate two types of models—one in
which these variables are calculated using the average ideolog-
ical placement of that candidate by all respondents in the rele-
vant state and year (which we will refer to as “mean candidate
placement”) and one in which the variables are calculated using
respondents’ own placements of the two candidates (which we
will refer to as “voter-specific placement”).16 These four differ-
ent measures are then aggregated at the campaign level. In addi-
tion, ABD express some uncertainty about the correct set of con-
trol variables to include in the analysis, resulting in the reporting
of two models for each variable of interest.

Columns 1–4 of Table 1 present our replication of ABD’s Ta-
ble 2, which incorporates corrections of several errors in the pub-
lished results (see the appendix for a more extensive discussion
of our replication). The corrected results, which serve as the ba-
sis for the BMA analysis below, show that the directional vari-
able is consistently positive and statistically significant but that
the proximity variable is consistently negative and significant.17

This result contradicts spatial voting theory, which suggests that
15Some studies have argued for combining directional and spatial approaches (e.g. Iversen 1994;

Adams and Merrill 1999; Merrill and Grofman 1999). However, we interpret the ABD paper as an
attempt to arbitrate between directional/discounting and proximity models.

16For the voter-specific evaluation, the proximity score is created by using the formula [(xR −
xi)2 − (xD − xi)2], where xR and xD are the respondent’s placements of the Republican and Demo-
cratic candidates (respectively) on a seven-point Likert scale of ideology and xi is the respondent’s
self-placement on that scale. For the voter-specific evaluation of the directional score, the relevant
equation is [(xD− 4)(xi − 4)− (xD− 4)(xi − 4)]. The mean candidate variables are identical except
that the average placements of each candidate from all respondents in that state and year are used
for xR and xD.

17In the published version of the table, the proximity variable is insignificant and changes signs
across specifications (see appendix).
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a party’s ideological proximity to voters should be positively as-
sociated with its share of the vote. Moreover, the magnitude of the
directional coefficients raise concerns about misspecification. For
instance, the results in the first column of Table 1 indicate that a
one unit increase in the Democratic directional advantage (a vari-
able with a range that exceeds 4 in the data) results in a 11% in-
crease in the Democratic share of the two-party vote.

[Table 1 about here.]

As stated earlier, it is inappropriate to include two competing
(and highly correlated) measures of a concept in the same model.
Our BMA analysis therefore considers the entire model space im-
plied by the five variables in the original model excluding those
models containing both the directional and proximity variables.18

Because the dependent variable is continuous, we can use the
BAS package. Columns 5–8 report our findings for the hyper-g
prior (a=3) with a uniform prior on the model space. Results were
substantively identical under AIC, BIC, and Zellner-Siow, as illus-
trated by Figure 2, which presents posterior plots for the variables
of theoretical interest under all four priors.

[Figure 2 about here.]

We focus on the posterior probability of inclusion as the best
metric for arbitrating between two possible measures of the same
concept. In this case, our findings show considerably less support
for ABD’s conclusions than our replication of their original tables.
The posterior probability of inclusion for the directional measures
is consistently higher than the proximity variables. However, the
Democratic directional advantage variable in the “mean candi-
date placement” model has a posterior probability of inclusion of
only 0.30, which suggests that the variable is a relatively weak
predictor of electoral outcomes.

The results reported in columns 5–8 suggest that the negative
coefficient on the proximity variables and the large coefficients
associated with the directional measures were artifacts of includ-
ing both measures in the same regressions. When we exclude

18In the text, ABD identify variables that were considered but not included in the final analysis.
For expositional purposes, we do not consider them there. We demonstrate the utility of BMA for
reanalyzing alternate control variables in our reanalysis of Fearon and Laitin (2003b) below.
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models that include both variables and average across the remain-
ing model space, we find that the proximity variable has a min-
imal rather than a negative coefficient. Second, the size of the
coefficients for the directional variables are substantially reduced.
These findings illustrate the inferential dangers of including com-
peting measures of a single concept in a statistical model, and
demonstrate how BMA can help arbitrate between such measures
in a systematic way.

5.2. U.S. House elections

In their widely-cited 2002 article, Canes-Wrone, Brady, and Co-
gan (henceforth CWBC) combine summary measures of roll-call
voting with electoral returns to show that legislative extremity re-
duces support for members of the U.S. House of Representatives
in future elections. Their work demonstrates an important link-
age between Congressional behavior and electoral outcomes. It
also provides a classic example of a research design intended to
demonstrate the robustness of the relationship between a single
predictor and a dependent variable.

The focus of the CWBC analysis is their measure of roll-call
ideological extremity, which is based on ratings of House mem-
bers provided by Americans for Democratic Action (ADA).19 For
expositional reasons, we focus here only on the full version of
their pooled model (column 2 of Table 2 in their article), which
estimates the effect of extremity on a member’s share of the total
two-party vote for the 1956–1996 period.

The pooled model that CWBC present, which is replicated in
the first column of Table 2 below, includes a measure of the dis-
trict presidential vote (which is intended to serve as a proxy for
party strength in the district) and seven other control variables.
These controls are presumably included to help ensure that any
relationship they find is not spurious. However, we can use BMA
to assess the robustness of their model across a wider range of
plausible control variables. The literature on US elections sug-
gests a number of other possible factors that might also be asso-
ciated with electoral vote share. In this reanalysis, we consider

19It is calculated as the ADA score for Democratic members and 100 minus the ADA score for
Republican members so that higher values represent greater extremity by party (Canes-Wrone,
Brady and Cogan 2002, 131). The resulting score is then divided by 100.
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variables measuring the demographic characteristics of the dis-
trict (the proportion of district residents who live in rural settings,
the proportion who work in the manufacturing sector, and the
proportion who are African Americans, union members, foreign
born, or veterans)20, incumbency (an indicator for members who
have served five or more terms), and a flexible function of years
since 1956 (i.e. linear, squared, and cubed terms) to capture the
changing magnitude of the incumbency advantage in this period.

We also use BMA to consider an alternate measure and a pos-
sible moderator. CWBC note (but do not show) that their re-
sults hold using an average of first and second dimension DW-
NOMINATE scores (Poole and Rosenthal 1997, 2007) instead of
ADA ratings. Since the average score across two dimensions is
difficult to interpret, we instead transform DW-NOMINATE first-
dimension scores by party (following the CWBC ADA measure)
to assess how results compare between two possible measures
of roll call extremity.21 Finally, it is plausible that the electoral
punishment for extremity may vary depending on the partisan
composition of the district. As such, we separately interact both
measures of roll-call extremity with the CWBC measure of district
presidential vote to assess whether the strength of the relationship
is conditional on party strength in the district.

In each case, we also exclude all models that include compet-
ing measures of the same concept (i.e. those that include one or
more ADA-based variables and one or more DW-NOMINATE-
based variables), those that do not include a dummy variable for
being in the incumbent president’s party (it implicitly interacts
with several other variables of interest), and all models that in-
clude the cubed or squared term for years since 1956 but exclude
a lower-order polynomial. Following our recommendations for
analyzing interactions (described above), we analyze the uncon-
ditional effect of roll-call extremity and the conditional effect in
separate models before pooling terms to assess the posterior prob-
ability of inclusion for the interaction terms.

Table 2 provides model outputs from the BMA analysis using
a Zellner-Siow prior on the coefficients and a Beta (3,2) prior on

20These variables are drawn from Adler (forthcoming). In each case, the values are multiplied
by -1 for Republicans to allow for differing effects by party.

21Specifically, we multiply Democrats’ first dimension scores by -1 and then rescale the resulting
variable to range from 0 to 1.

17



the model hyperparameter γ.22

[Table 2 about here.]

As noted above, the table contains three models. The first, which
is reported in columns 2–3, considers the unconditional effect of
extremity and therefore excludes all models with interaction terms.
This analysis allows us to estimate the robustness of the CWBC
finding across a large model space. The second model, which
is reported in columns 4–5, examines the potential moderating
effects of district party strength and therefore excludes all mod-
els that do not include a properly specified interaction with both
constitutive terms. In this case, we can interpret the posterior
distributions of the extremity constitutive term and interaction
as we would in a normal interaction model.23 Finally, the third
model, which is reported in columns 6–7, includes the interaction
terms in the averaging process but does not require them to be in-
cluded (though we again omit all models with an interaction that
omit one or more constitutive terms). The resulting estimates for
the constitutive terms are not necessarily interpretable, but this
model allows us to use the posterior probability of inclusion to
assess the importance of the interaction terms.

Comparing these results with those reported in the original
study (column 1) leads us to three conclusions.24 First, the un-
conditional effect of extremity on electoral support, as shown in
columns 2–3, is robust to a large set of possible model configura-
tions. The CWBC hypothesis is supported across a vast space of
more than 98,000 models.

Second, we find that measures of roll-call extremity constructed
using DW-NOMINATE scores perform substantially better in all
circumstances than those created using ADA scores. The DW-
NOMINATE extremity variable dominates the posterior space in
all the analyses with a posterior probability of inclusion approach-

22The posterior probability plots for the main coefficients of interest are not shown for exposi-
tional reasons but are available upon request. In this case, they are regularly shaped and provide
no additional information beyond the posterior summary statistics provided in Table 2.

23Note that we cannot interpret the constitutive term for district presidential vote as we would
normally would (the marginal effect when the extremity variable equals zero) since it is interacted
with two different measures of roll-call extremity.

24The substantive inferences discussed below are consistent across multiple priors (results avail-
able upon request). The original CWBC analysis used robust standard errors, which are not avail-
able in BMA and thus not included in the analysis below.
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ing one. By contrast, the ADA extremity variable and its associ-
ated interaction term have extremely low posterior probabilities
of inclusion. For instance, the posterior probabilty of inclusion
for the ADA-based extremity measure in the unconditional model
reported in columns 2–3 is 5.930× 10−6.

Third, the effect of roll-call extremity on election results is mod-
erated by party strength in the district (as measured by the CWBC
presidential vote variable). The DW-NOMINATE interaction term
is highly statistically significant in columns 4–5 (p(β > 0| β 6=
0, Y) > .999) and its posterior probability of inclusion in the pooled
model in columns 6–7 is approximately one. Substantively, these
results indicate that members from very marginal districts suf-
fer severe punishment for legislative extremity but the electoral
cost of extremity declines rapidly as party strength in the district
increases. In those districts in which the party is strongest, the
marginal effect of roll-call extremity is actually either negligible
(i.e. the 95% confidence interval includes zero) or positive.25 In
other words, members are punished to the extent they are out of
step with their district.26

5.3. Civil war onset

In a groundbreaking study, Fearon and Laitin (2003b) seek to de-
termine the most important predictors of civil war onset (a binary
dependent variable). Their reported logit models estimate the ef-
fects of thirteen explanatory variables. However, throughout the
text, footnotes, and additional results posted online (2003a), F&L
are unusually transparent in describing numerous other variables
and interactions that were considered during the modeling pro-
cess. In short, they acknowledge a great deal of uncertainty about
the final model configuration that cannot be analyzed using tradi-
tional methods. Indeed, the length of their online supplement—
which is 30 pages and contains 18 multi-column tables—indicates

25To fully understand this effect, it was necessary to estimate the marginal effect of extremity
over the observed range of district presidential vote in a single model (Brambor, Clark and Golder
2006). We selected the model containing the interaction and its constitutive terms with the highest
posterior probability (.24). Since the sign and significance of the interaction and its constitutive
terms were consistent with the conditional posterior distributions in the BMA analysis, the re-
sulting marginal effect estimates should be representative of the set of models that include the
interaction. All results of this analysis are available upon request.

26Griffin and Newman (2009) find a similar result using data from the 2000 and 2004 National
Annenberg Election Study.
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the need for a more concise approach to specification uncertainty.
Fearon and Laitin’s transparency allows us to identify a num-

ber of other variables that were considered to be plausible pre-
dictors of civil war onset. We estimate that F&L discuss approx-
imately 74 possible independent variables (excluding various in-
terpolation/missing data decisions), which implies a potential space
of roughly 2 × 1022 potential models. As noted earlier, the tra-
ditional approach does not allow researchers to properly express
uncertainty about their estimates when faced with such vast model
spaces. For instance, consider the following quote (2003b, 84):

When we add dummy variables for countries that have
an ethnic or religious majority and a minority of at least
8% of the country’s poulation, both are incorrectly signed
and neither comes close to statistical significance. This
finding does not depend on which other variables are included
in the model (emphasis ours).

Obviously, F&L did not test these variables under all 20 sextil-
lion possible specifications. One suspects that they tried adding
relevant variables to their “best” models and found they were in-
significant (one such model is reported in Table 3 of Fearon and
Laitin 2003a).27 BMA makes it possible to systematically justify
such statements.

In this analysis, we chose a subset of F&L’s variables to eval-
uate. One of the limits of BMA is that the model space q = 2p

can quickly exceed the abilities of even the most advanced com-
puters to fully explore the posterior model distribution. Clyde
(2003) recommends that any models that use more than approxi-
mately 25 variables should be analyzed using stochastic sampling
techniques rather than deterministic search algorithms. However,
no publicly available BMA software performs stochastic sampling
for GLM models (but see Pang and Gill 2009). As such, we chose
25 publicly available variables that had no missing data in the
same universe of cases that F&L analyze, which allows us to ex-
plore the entire posterior distribution using the bic.glm function
in the BMA package. To reduce the software limitations described
above, we effectively disable the model selection criterion, ensur-
ing that the software returns the maximum number of relevant

27This should not be interpreted as a criticism of Fearon and Laitin’s important article. Many
studies, including ones we have participated in, use this approach.
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models, and create an option to use the Akaike Information Cri-
terion (AIC) instead of BIC (Akaike 1974).

Per our earlier discussion, we also place theoretically moti-
vated limitations on the models we wish to explore. Specifically,
we put a zero prior on all models that do not contain the key ex-
planatory variable indicating the existence of a prior war. We also
put a zero prior on models that contain both the Polity IV measure
of democracy and dummy variables for democracy and anocracy
derived from Polity IV or include only one of the anocracy and
democracy dummy variables. In each case, we seek to adhere to
standard procedures in the political science literature.

We replicate their primary models of civil war onset in columns
1 and 2 of Table 3.28

[Table 3 about here.]

Columns 3–6 of Table 3 provide conditional means, standard de-
viations, and posterior probabilities of inclusion under AIC and
BIC.29 Posterior plots under AIC are presented in Figure 3.30

[Figure 3 about here.]

Although the table and figure contain a great deal of informa-
tion, we highlight two key findings. First, conditional posterior
distributions for the variables that F&L identify as statistically
significant predictors of civil war onset—prior war, per capita
income, log(population), log(% mountainous), oil exporter, new
state, instability, and anocracy— are consistent with their original
results. BMA therefore provides a truly systematic demonstration
of the robustness of F&L’s results (and does not require 30 pages
of tables to do so!). However, most of F&L’s predictors (which
are frequently measured imprecisely) have low posterior proba-
bilities of inclusion under BIC (column 6). Besides the constant
and the prior war variable (which we required to be included in

28These models correspond to Models 1 and 3 in F&L. We do not address the three other models
they report, which use different dependent variables.

29Before performing our analysis, we dropped a single observation with a miscoded value for
the dependent variable from F&L’s data. In order to assure that enough models were sampled, we
set the leaps and bounds algorithm employed by bic.glm to return the 100,000 best models for each
possible rank of X.

30It’s worth noting that the BMA package assumes that the posterior distribution of each coeffi-
cient is normal, while BAS assumes they are distributed Student t with one degree of freedom. As
a result, BMA plots tend to be more smooth than those generated by BAS.
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each model), only per-capita income, logged population, and the
indicator of a new state have a posterior probability of inclusion
of more than 0.5—a result that underscores the need to examine
the sensitivity of one’s results to priors.

6. CAUTIONS AND CONCLUSIONS

Political science researchers are often confronted with substantial
uncertainty about the robustness of reported results. In many
prominent literatures, researchers have proposed dozens (if not
hundreds) of potential explanatory variables. Classical approaches
to modeling techniques provide researchers with few tools for
dealing with this uncertainty. As a result, readers are frequently
concerned about alternative model configurations that were tried
but not reported — and those that were never tried at all.

BMA offers researchers a comprehensive method for assessing
model uncertainty that can easily be presented to readers. In this
paper, we have reviewed recent developments in prior specifica-
tions and posterior computation techniques, presented a contem-
porary approach to the use of BMA, and applied this methodol-
ogy to three prominent studies from the discipline. Our empirical
analyses revealed substantive differences in the effects of the the-
oretical variables of interest from Adams, Bishin and Dow (2004),
demonstrated the conditional nature of the main effect reported
in Canes-Wrone, Brady and Cogan (2002), and gave a more rig-
orous foundation to the findings presented in Fearon and Laitin
(2003b). In general, we strongly believe that BMA can strengthen
the robustness of reported results in political science.

Despite the usefulness of the technique, we wish to conclude
with words of caution about the appropriate use of BMA. First,
we emphasize that it should not be used to conduct theory-free
searches of the model space, particularly if such a step is not re-
ported to readers. BMA also offers no solutions to the problems
of endogeneity or causal inference. Statistical analysis should be-
gin with the careful development of a model based on theory and
previous research (Gelman and Rubin 1995). BMA is best used as
a subsequent robustness check to show that our inferences are not
overly sensitive to plausible variations in model specification.

On a related note, we also caution that BMA—like all statisti-
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cal methods—cannot defeat unscrupulous researchers. While it
should be more difficult to manipulate BMA analysis than, say, a
single reported model specification, researchers could alter the set
of variables that are averaged to try to support a desired finding.
Similarly, one could use BMA to identify a model specification
that maximizes fit to the data and then present that choice as the
result of theory. As in all such cases, we must trust in the good in-
tentions of the researcher and use theory to guide our judgments
about the set of independent variables that should be considered.

With those caveats in mind, we hope that more analysts make
use of BMA, which makes it possible to systematically test the
robustness of our findings to a much wider array of model speci-
fications than is otherwise possible.
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APPENDIX: ADAMS, BISHIN, DOW (2004) REPLICATION

Our reanalysis of Adams, Bishin and Dow (2004) began with a replication of
their published results. The authors generously provided us with code and
data for their individual-level results, included an unpublished correction of
their Table 1. In collaboration with ABD, who provided us with further de-
tails on their data, we returned to the original 1988-1990-1992 Pooled Senate
Election Study data and located several potential problems with their reported
(and corrected) results.

ABD’s correction revised the coding of the dependent variable in the individual-
level analysis from their published paper. Numerous non-voting respondents
were inadvertently coded as having voted for the Republican Senate candidate.
In collaboration with ABD, we uncovered a few other discrepancies. Several
of these appeared to be coding errors in the statistical analysis and in the data
itself.1 An additional concern is that the coding of the proximity advantage
variable appears to differ from the one presented in the article (we used the
coding [(xR − xi)2 − (xD − xi)2], which conforms to equation 3 and 4 and foot-
note 17).

The model results reported in Table 1 of this paper incorporate all relevant
corrections for the aggregate-level data. The table below reports the original
published aggregate-level results and our replication of those results. Our
replication of their individual-results is reported in Montgomery and Nyhan
(2008). Details and code are available upon request.

Aggregate Democratic vote share in Senate campaigns 1988–1992
ABD (2004) original ABD (2004) replication

MC VS MC VS MC VS MC VS
D proximity adv. -2.88 0.91 -2.67 0.78 -3.137 -2.881 -3.053 -2.007

(1.78) (1.80) (1.55) (1.78) (1.593) (1.270) (1.315) (1.056)
D directional adv. 9.45 8.68 7.08 7.29 11.146 5.729 7.953 4.177

(3.31) (3.32) (2.67) (2.56) (3.376) (1.620) (2.854) (1.356)
D incumb. adv. 6.83 5.96 7.50 7.41 6.376 6.609 1.060 1.139

(1.14) (4.02) (6.23) (5.99) (1.092) (1.054) (1.201) (1.189)
D quality adv. 5.70 4.38 1.52 1.23 5.972 5.035 3.117 2.378

(1.48) (2.34) (1.22) (1.09) (1.400) (1.384) (1.240) (1.216)
D spending adv. 3.16 3.00 0.270 0.265

(1.27) (1.32) (0.041) (0.040)
D partisan adv. 0.27 0.22 0.055 0.060

(0.04) (0.04) (0.054) (0.054)
Constant 53.92 52.06 52.46 51.34 54.759 52.786 53.309 52.028

(1.36) (1.44) (1.14) (1.37) (1.325) (0.892) (1.155) (0.758)
N 95 95 95 95 95 95 94 94

MC=Mean candidate placement, VS=voter-specific placement

1These errors included some miscoded California Senate data, what we suspect was the inclu-
sion of the wrong variable in one of the regressions in the corrected tables, and apparent data entry
errors in the aggregate-level variables that are included in both the individual-level and aggregate
regressions.



Figure 1: Sample BMA posterior coefficient plot
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Note: The vertical line located at 0 on the x-axis represents the posterior probability of models that
exclude the variable (p(β = 0)). The density represents the conditional posterior probability for
the parameter in those models in which it is included.



Figure 2: Proximity/directional posteriors for Democratic vote share under
four priors
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Figure 3: Predictors of civil war onset 1945–1999 (AIC)
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Table 3: Logit models of civil war onset 1945–1999

AIC AIC BIC BIC
F&L M1 F&L M3 Cond. mean P(β 6= 0) Cond. mean P(β 6= 0)

(SD) (SD)
Constant -6.731 -7.019 -7.007 1.00 -6.597 1.00

(0.736) (0.751) (1.360) (0.717)
Prior war -0.954 -0.916 -0.871 1.00 -0.724 1.00

(0.314) (0.312) (0.315) (0.312)
Per capita income -0.344 -0.318 -0.304 1.00 -0.314 1.00

(0.072) (0.071) (0.079) (0.068)
log (population) 0.263 0.272 0.274 0.998 0.323 0.994

(0.073) (0.074) (0.080) (0.069)
log (% mountainous) 0.219 0.199 0.201 0.880 0.201 0.221

(0.085) (0.085) (0.088) (0.082)
Noncontiguous state 0.443 0.426 0.479 0.565 0.550 0.073

(0.274) (0.272) (0.314) (0.285)
Oil exporter 0.858 0.751 0.760 0.904 0.820 0.431

(0.279) (0.278) (0.298) (0.268)
New state 1.709 1.658 1.697 1.00 1.770 0.997

(0.339) (0.342) (0.351) (0.337)
Instability 0.618 0.513 0.569 0.835 0.690 0.399

(0.235) (0.242) (0.250) (0.233)
Democracy (Polity IV) 0.021 0.025 0.200 0.028 0.047

(0.017) (0.017) (0.017)
Ethnic fractionalization 0.166 0.164 0.159 0.272 0.242 0.016

(0.373) (0.368) (0.505) (0.372)
Religious fractionalization 0.285 0.326 0.790 0.300 0.076 0.013

(0.509) (0.506) (1.564) (0.573)
Anocracy 0.521 0.598 0.618 0.748 0.034

(0.237) (0.245) (0.228)
Democracy 0.127 0.166 0.618 0.143 0.034

(0.304) (0.314) (0.306)
Wars in neighboring countries 0.051 0.290 0.068 0.017

(0.093) (0.094)
Prop. largest ethnic group -0.273 0.285 -0.283 0.016

(0.587) (0.430)
Prop. largest religious group 0.004 0.283 -0.0002 0.013

(0.018) (0.006)
Percent Muslim 0.003 0.358 0.004 0.039

(0.003) (0.003)
Log (number of languages) -0.021 0.263 0.009 0.013

(0.156) (0.118)
Former French colony -0.202 0.309 -0.284 0.021

(0.301) (0.291)
Eastern Europe -0.269 0.378 -0.515 0.031

(0.656) (0.403)
Asia 0.239 0.303 0.037 0.013

(0.685) (0.311)
Sub-Saharan Africa 0.494 0.381 -0.006 0.013

(0.661) (0.268)
Middle East and North Africa 0.419 0.362 0.237 0.019

(0.593) (0.273)
Latin America 0.522 0.392 0.447 0.034

(0.663) (0.316)
Second largest ethnic group -0.386 0.270 0.210 0.013

(1.184) (1.006)
N=6327


