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Abstract— Objective: To develop an algorithm that can
infer the severity level of a COPD patient’s airflow lim-
itation from tidal breathing data that is collected by a
wearable device.

Methods: Data was collected from 25 single visit
adult volunteers with a confirmed or suspected diagnosis
of chronic obstructive pulmonary disease (COPD). The
ground truth airflow limitation severity of each subject was
determined by applying the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) staging criteria to the
subject’s spirometry results. Spirometry was performed in
a pulmonary function test laboratory under the supervision
of trained clinical staff. Separately, the subjects’ respira-
tory signal was measured during quiet breathing, and a
classification model was built to infer the subjects’ level
of airflow limitation from the measured respiratory signal.
The classification model was evaluated against the ground
truth using leave-one-out testing.

Results: Severity of airway obstruction was classified
as either mild/moderate or severe/very severe with an
accuracy of 96.4%.

Conclusion: Tidal breathing parameters that are mea-
sured with a wearable device can be used to distinguish
between different levels of airflow limitation in COPD
patients.

I. INTRODUCTION

Early detection and treatment of chronic obstructive
pulmonary disease (COPD) exacerbations is critical to
improving patients’ quality of life. And frequent assess-
ment of lung function could help with early detection:
for instance, patients experience a significant drop in
forced expiratory volume in 1 second (FEV1) up to 2
weeks before an exacerbation [1]. Unfortunately, the
state-of-the-art for measuring lung function at home is
hand-held spirometry, a technique that is hindered by
low patient adherence and poor patient technique in
executing the spirometric breathing maneuvers [2].

To address this problem, many studies over the past
few decades have focused on monitoring COPD pa-
tients with mobile and wearable technology. Various
approaches have been explored, from monitoring of
physical activity [3, 4], to accelerometer-based assess-
ment of cardiorespiratory function [5, 6]. These previ-
ous studies have generally demonstrated that wearable
sensor data can be used to distinguish between COPD
patients and healthy controls. But they fall short in
elucidating whether wearable technology can produce
clinically useful information for COPD management.

GOLD classification FEV1 % predicted

1: Mild > 80
2: Moderate 50 ≤ FEV1 < 80
3: Severe 30 ≤ FEV1 < 50
4: Very Severe FEV1 <  30tidal breathing

Fig. 1: The objective of the proposed algorithm is to process
the respiratory signal measured during tidal breathing and
produce a classification of airflow limitation severity that
corresponds to one of the GOLD staging criteria [7].

Specifically, none of the aforementioned studies has
clarified whether a COPD patient’s severity level of
lung airway obstruction—as classified by the Global
Initiative for Chronic Obstructive Lung Disease (GOLD)
[7]—can be inferred from wearable sensors.

A few researchers have gone beyond merely distin-
guishing between COPD patients and healthy controls,
and have instead introduced new approaches to infer
severity of airway obstruction from non-spirometric data
[8, 9]. Unfortunately, these alternatives to spirometry
depend on data that cannot easily be measured with a
wearable device. Thus, these novel tools for estimating
COPD severity are unsuitable for continuous, at-home
patient monitoring.

Unless wearable sensor data can be translated into
a usable, clinical-standard rating of lung airway ob-
struction, these emerging technologies will have a lim-
ited impact on remote COPD management [10]. To
tackle this problem, we have developed an algorithm
(Figs. 1 and 2) that can infer a patient’s GOLD clas-
sification level of lung airway obstruction from the
respiratory signal measured during tidal (i.e. “quiet”)
breathing. The respiratory signal can easily be measured
via accelerometry [11] or cardiac-derived techniques
[12, 13, 14], using unobtrusive wearable devices like
tags, earphones, rings or smartwatches [15, 16, 17, 18].
Our proposed algorithm is a step towards bridging the
gap between wearable sensor data and clinically relevant
information for COPD management.
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Fig. 2: Block diagram of proposed algorithm. The feature extractor processes 20 second windows of respiratory data at a time,
to produce fractional inspiratory time (FIT), respiratory rate (RR) and the tidal volume (TV). An anomaly detector throws a flag
if the extracted features are outside the normal expected ranges (see text). Finally, a k-nearest neighbour classifier infers the
GOLD classification airflow limitation level from the extracted features.

II. EFFECT OF AIRWAY OBSTRUCTION ON TIDAL
BREATHING

The strict diagnosis of COPD requires compatible
symptoms plus spirometry that demonstrates a ratio of
forced expiratory volume in 1 second to forced vital
capacity (FEV1/FVC) that is less than 70%. Once a
COPD diagnosis is made, effective management of the
disease depends on monitoring the severity of airflow
limitation, which is derived from the percentage pre-
dicted forced expiratory volume (FEV1). Unfortunately,
FEV1 measurement requires active user engagement, is
dependent on the patient’s skill and motivation level, and
is generally unreliable unless performed under skilled
clinical supervision [2].

As an alternative to spirometry, we propose to mea-
sure and analyze tidal, or “quiet” breathing, since the
same pathology that produces abnormal FEV1 values
will also affect the patient’s respiratory pattern when
at rest. Following is a brief discussion of how airway
obstruction affects various aspects of the normal respi-
ratory pattern.

A. Expiratory Phase Duration
COPD has two contributory pathologies, chronic

bronchitis and emphysema, and most patients with
COPD have both pathologies. Chronic bronchitis causes
inflammation and excess mucus production in the lungs’
airways, resulting in impeded airflow. When breathing
in (that is, during the “inspiratory phase” of respiration),
COPD patients can overcome this airway obstruction by
increasing the work of the diaphragm and intercostal
muscles and breathing in more forcefully. Airway di-
ameter also increases slightly in inspiration as pleural
pressure becomes more negative than the atmosphere.
Breathing out (during the “expiratory phase”) is a more
passive process than breathing in, relying on elastic
recoil rather than muscular action during normal res-
piration. So, with no active compensatory mechanism to
counter it, airway obstruction will slow down the rate
at which patients can breathe out and thus prolong the
expiratory phase [19].

Small airways in the emphysematous lung can also
collapse in exhalation, a major driver of airflow ob-
struction in patients with COPD, leading to slow expira-
tory phase. Some patients with emphysema will utilize
pursed lip breathing to facilitate maximal exhalation,
which also contributes to a long expiratory phase [20].

B. Tidal Volume

At the end of the expiratory phase of tidal breathing,
there is an equilibrium between the elastic recoil pres-
sure of the chest wall and that of the lungs. This pressure
equilibrium will always leave the lungs partially inflated
with some residual amount of air, or functional residual
capacity (FRC). But COPD patients experience a loss
of lung elastic recoil, and this causes an increase in
FRC [21, 22]. As such, the amount of additional air that
COPD patients can inhale during tidal breathing (known
as “tidal volume”) is decreased [23].

C. Respiratory Rate

In addition to diminished elasticity, the air sacs of
COPD patients suffer wall damage, which reduces their
surface area and decreases diffusion of oxygen into, and
carbon dioxide out of, the bloodstream. COPD patients
typically overcome this gas exchange inefficiency by
breathing faster to increase their lung ventilation [24,
25]. So, worsening COPD is often marked by an in-
creased resting respiratory rate.

III. PROPOSED ALGORITHM

As the block diagram of Fig. 2 shows, our algorithm
for inferring COPD severity receives two inputs: raw
respiratory data and body-mass index (BMI). The output
is a COPD severity classification that corresponds to
GOLD staging criteria [7]. In this section, we discuss
the main components of the algorithm, which comprises
a feature extractor, an anomaly detector, and a k-nearest
neighbours (KNN) classifier.
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A. Feature Extractor

The feature extractor processes 20 second windows
of respiratory data at a time. For each window, the
feature extractor first calculates a first-pass estimate
of respiratory period (RRFP in Fig. 2) as the average
distance between peaks of the autocorrelated signal.
Next, the algorithm identifies the local maxima and local
minima, which correspond to the end inspiratory and
expiratory points, respectively, of each breathing cycle.
The algorithm avoids spurious end points by ignoring
any maxima (or minima) that are separated by less than
0.6 of the first-pass respiratory period. The algorithm
also ignores any maxima (minima) with a height (depth)
that is less than 30 % of the highest (lowest) point in
the 20 s window. From the inspiratory and expiratory
end points, the feature extractor calculates the fractional
inspiratory time, respiratory period and the respiratory
amplitude for each breathing cycle (see Fig. 3).

Fractional inspiratory time (FIT) is the ratio of the
inspiratory time to the total respiratory period. Referring
to Fig. 3, we calculate this as FIT = Ti/Ttot. Note that
the quantity 1−FIT is a measure of the expiratory phase
duration, normalized to the respiratory period.

The respiratory rate is the average number of breaths
taken per minute, calculated as RR = 60/(BMI · Ttot).
We normalize the respiratory rate with body-mass index
(BMI), because they are significantly correlated [26, 27].

The respiratory amplitude, RA, is the difference in
force between an adjacent trough-peak pair (see Fig. 3).
This quantity provides an approximation of the tidal
volume as follows. The respiratory amplitude is propor-
tional to the change in radius of the chest as it expands
during the inspiratory phase. Since BMI is proportional
to chest area [28], we can estimate the tidal volume
(modulo constants of proportionality) as TV= RA·BMI.

B. Anomaly Detector

Wearable device data are prone to being corrupted
by the everyday disturbances encountered in a home
environment [29]. So, our proposed algorithm includes
an anomaly detector to flag and discard potentially noisy
data. The anomaly detector throws a flag if either of
the following conditions is met for a given 20 second
window: (1) the ratio of the FIT mean to standard
deviation is less than 3.33; or (2) there is more than
a 10 % difference in the respiratory rate estimated from
autocorrelation versus that estimated directly from the
raw respiratory signal.

C. KNN Classifier

The k-nearest neighbor (KNN) classifier infers the
patient’s COPD severity level from the FIT, RR and
TV features. When presented with the feature vector
of a previously-unseen patient, the classifier will assign
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Fig. 3: A typical respiratory signal. The inspiratory phase
lasts Ti seconds, and the full respiratory cycle (inspiratory and
expiratory phases) lasts Ttot seconds. The amplitude of the
signal is measured from trough to peak as RA Newtons.

the severity level label (GOLD stage 1, 2, 3 or 4,
corresponding to ‘mild’, ‘moderate’, ‘severe’ or ‘very
severe’ airflow limitation) that is most similar to the
vector’s closest 7 neighbors. The metric used to identify
the closest neighbors is the cosine distance measure,
which is defined for two vectors x1 and x2 as

d(x1, x2) =
x1 · x2

‖x1‖ · ‖x2‖
. (1)

IV. EXPERIMENTAL METHOD

To evaluate the performance of our algorithm, we
collected and analyzed data from patients at the pul-
monary clinic of the Dartmouth Hitchcock Medical
Center (Lebanon, NH). We obtained informed consent
from each subject before their inclusion in the study.
All aspects of the study protocol were reviewed and
approved by the Dartmouth College Institutional Re-
view Board (Committee for the Protection of Human
Subjects-Dartmouth; Protocol Number: 00028641).

A. Subjects

Twenty-five adults, 10 men and 15 women, with either
suspected or previously-diagnosed COPD, and sched-
uled to receive a physician-ordered spirometry test, were
recruited for this study. We were unable to collect more
data before the onset of the Covid-19 pandemic in March
2020 halted all routine spirometry testing, due to the risk
of aerosolized droplets [30]. A summary of the subjects’
spirometry test results and their anthropomorphic data is
listed in Table I.

B. Data Collection

First, each subject donned a Go Direct Respiration
Belt (Vernier Software & Technology, Beaverton, OR)
and breathed quietly while seated. The Respiration Belt
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mean ± std
Age (y) 67.6± 11.6
Height (cm) 165.3± 10.7
Weight (kg) 73.6± 17.1
BMI (kg/m2) 27.0± 6.08
FEV1/FVC 0.52± 0.16
FEV1 (L) 1.50± 0.81
FVC (L) 2.68± 1.09

TABLE I: Summary of anthropomorphic data and spirometry
test results of the subjects recruited for this study (n=25, 10
men).

is an instrumented strap of fabric that is worn just
below the breast bone. It has an embedded accelerometer
that measures the force produced by the chest as the
subject breathes in and out. The accelerometer data is
wirelessly transmitted to a nearby laptop. Figure 3 is a
typical example of the resulting tidal breathing signal
waveform that we collected from each subject. Each
subject produced 15-20 breaths (approximately 1 minute
of data collection).

Next, we collected spirometry data to establish the
ground truth of the patient’s level of COPD severity.
Each subject performed standard spirometry with a PC-
based spirometer under the supervision of trained clin-
ical staff. The subject performed three spirometery ma-
neuvers that were acceptable and reproducible according
to the American Thoracic Society criteria. We collected
the subject’s best values of FEV1/FVC, FEV1 and FVC for
subsequent data analysis.

C. Data Analysis

We generated a correlation matrix to study the rela-
tionship between the tidal breathing parameters (frac-
tional inspiratory time, respiratory rate, and estimated
tidal volume) and the spirometric variables (FEV1/FVC,
FEV1, FVC). We further explored the relationships be-
tween these two sets of parameters via linear regression
analysis.

To accommodate the limits on data collection caused
by the Covid-19 pandemic, we employed a number of
techniques to rigorously evaluate the performance of our
algorithm. The low total number of subjects enrolled in
the study meant that there was an insufficient number
of subjects to measure the classification accuracy for
every COPD severity level with adequate power [31]. We
addressed this problem by grouping the patients into two
classes: mild/moderate and severe/very severe. Further,
we calculated the confidence intervals of our measured
sensitivity and specificity. Also, we tested our algorithm
using leave-one-out cross validation as follows. We held
out data from each subject in turn, and built a KNN
model on the remaining data, which was augmented

FEV1/FVC FEV1 FVC

FIT 0.274 0.295 0.135
p = 0.007 p = 0.005 p = 0.070

RR 0.129 0.08 0.0125
p = 0.078 p = 0.171 p = 0.595

TV 0.060 0.317 0.329
p = 0.238 p = 0.003 p = 0.003

TABLE II: Matrix of correlations between tidal breathing
parameters and spirometric variables.
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Fig. 4: FEV1/FVC regression model predictions versus true val-
ues. The dashed gray curve is the line of equality. Coefficient
of determination R2 = 0.435, with p = 0.002.

via synthetic minority oversampling [32]. The resulting
model was evaluated on the left-out data sample. Results
were aggregated over all 25 folds in order to calculate
sensitivity and specificity values.

V. RESULTS AND DISCUSSION

Table II, Figs. 4 and 5 show the correlation between
tidal breathing parameters and spirometric variables.
From Table II, FEV1 and FEV1/FVC are most strongly
correlated with FIT (R2 = 0.295, p = 0.005 and
R2 = 0.274, p = 0.007 respectively), while FVC is
most strongly correlated with tidal volume (R2 =
0.329, p = 0.003). These results are in line with the
observation (see Section II) that airway obstruction is
a factor that determines both FIT and the spirometer
parameters, FEV1/FVC and FEV1. Similarly, FVC showed
the strongest correlation with tidal volume, due to the
effect of lung elastic recoil on both these measures.

The performance of the severity classification model
is summarized in Table III, Figs. 6, 7 and 8. The
point estimate values for sensitivity and specificity are
100% and 92.8%, respectively. Also, the area under the
receiver operating characteristic curve (AUC) is 0.93.
Our algorithm can reliably distinguish between COPD

4
1395

Authorized licensed use limited to: Dartmouth College. Downloaded on February 10,2022 at 13:02:33 UTC from IEEE Xplore.  Restrictions apply. 



0 0.5 1 1.5 2 2.5 3 3.5

True FEV1 (L)

0

0.5

1

1.5

2

2.5

3

3.5
E

st
im

a
te

d
 F

E
V

1
 (

L
)

Fig. 5: FEV1 regression model predictions versus true values.
The dashed gray curve is the line of equality. Coefficient of
determination R2 = 0.427, with p = 0.002.

Fig. 6: Scatter plot of airflow limitation severity class labels
versus tidal breathing parameter features. Black markers indi-
cate mild or moderate airway obstruction, while red markers
indicate severe or very severe obstruction. The asterisks are
the true class labels, and the circles are the classifier’s inferred
output.

GOLD stages 1+2 and GOLD stages 3+4.

Table IV compares our work to other studies in the
literature. The different approaches all yield generally
the same level of classification accuracy, but our work
differs in one critical aspect: while others depend on
extensive medical records [9, 8], questionnaires [33] or
complex protocols and equipment [34] to make infer-
ences, our approach only requires the user’s BMI and
respiratory signal. For most patients, BMI need only be
measured periodically, during the annual check-up. And
respiratory signal can be continuously measured with
any number of wearable devices [15, 16, 17, 18, 35].

GOLD 1+2 GOLD 3+4

Predicted Class

GOLD 1+2

GOLD 3+4

T
ru

e
 C

la
s
s

7.1%92.9%

100.0%

Fig. 7: Confusion matrix for airflow limitation severity infer-
ence.
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Fig. 8: Receiver operating characteristic curve for airflow
limitation severity inference, where ‘severe/very severe’ is the
positive class.

Estimate 80% CL 95% CL
Sens (%) 100 [81.1, 100] [71.5, 100]
Spec (%) 92.8 [74.9, 99.2] [66.1, 99.8]

TABLE III: Performance of classifier for stratification of
airway obstruction severity, where GOLD stage 3 and 4
(severe/very severe) is the positive class, and GOLD stage 1
and 2 (mild/moderate) is the negative class. The point estimate
is reported, along with the 80% and 95% confidence limits.
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Accuracy (%) Source Data Wearable?
[9] 84 Computed tomography (CT) scans N

[33] 80 Blood glucose, environmental humidity, questionnaires, etc. N
[8] 97 Patient medical records N

[34] 94 12-point lung auscultation N
This work 96 Respiratory signal Y

TABLE IV: Comparison of different approaches for inferring severity of airflow limitation in COPD patients.

VI. CONCLUSION

In this paper, we presented an algorithm to infer the
severity of a COPD patient’s airflow limitation from tidal
breathing data that was collected by a wearable device.
We evaluated the algorithm on adult subjects with a
confirmed or suspected diagnosis of chronic obstructive
pulmonary disease (COPD), and we confirmed that the
algorithm is able to stratify the severity of patients’
airway obstruction. The results of this study provide a
strong premise for further data collection and exploring
the concept of wearable devices for lung health moni-
toring.
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