
Analog LSTM for Keyword Spotting

Kofi Odame, Maria Nyamukuru
Dartmouth College, 15 Thayer Drive, Hanover NH, 03755

Abstract— In this paper, we present a novel analog
application-specific integrated circuit (ASIC) architecture
for edge artificial intelligence. Our novel architecture is
a power efficient long short-term memory, which is a
deep learning neural network that is especially suited for
processing time-series sensor data. Evaluated on a 10-
class keyword spotting machine learning task, our neural
network achieves a classification accuracy of 91 %, with
a model size of 2264 parameters and estimated power
consumption of 0.76 µW.

I. INTRODUCTION

Self-powered edge artificial intelligence (AI) is a key
enabling technology for the billions of sensors that
will potentially be deployed worldwide as part of the
internet-of-things (IoT). One class of edge AI that is
well-suited for IoT sensors is analog long short-term
memory (LSTM) [1]. But even for moderately complex
applications like keyword spotting, analog LSTM con-
sumes more power than is feasible for a self-powered
solution (see Fig. 1).

To address this problem, we introduce a new, energy-
efficient analog LSTM for keyword spotting. We achieve
energy efficiency by using (1) fewer inputs and (2)
fewer operations than the state-of-the-art (Fig. 2). Our
approach can be used in addition to conventional power
reduction strategies like compute-in-memory, weight
quantization or knowledge distillation.

II. PYKNOGRAM: FEWER INPUTS

The first processing stage in keyword spotting is gen-
erally spectral analysis. This analysis produces dozens of
input spectrogram features, a comprehensive, but sparse,
time-frequency representation of the audio signal. Be-
cause they are a sparse representation, many spectro-
gram features contain little useful information, resulting
in unnecessary processing and power consumption.

To improve power efficiency, we have developed
the pyknogram filter, which produces a dense, low-
dimensional version of a spectrogram. Figure 3(a) (top
panel) shows one channel of the pyknogram filter. First,
a bandlimited signal, Vu, is input to an adaptive bandpass
filter. Then, the adaptive filter attempts to minimize the
error between its input and output Vw by adjusting its
center frequency, fc; the error is minimized when fc
is tracking the input signal’s most energetic frequency
region. Thus, the center frequency, fc, is the output
“feature” of the pyknogram analysis. For voice inputs,

p
o

w
er

 b
u

d
g
et

 (
3

5

W
)

10
0

10
1

10
2

10
3

power consumption (W)

Vocell

NS-FDN

LSTM-CIM

RNN-Guo

LSTM-Zhao

ERA-LSTM LSTM

mic

Fig. 1: Power consumption exceeds budget for a self-powered
wearable sensor comprising a 69 dB(A) SNR microphone
(‘mic’) and LSTM chip (‘LSTM’). Digital LSTM consumes
less power, but requires a 1.6 mW digital microphone [2].
Analog LSTM consumes more power, but requires a 34 µW
analog microphone [3]. Both strategies exceed the 35 µW
harvested power budget [4, 5]. Digital LSTM chips: LSTM-
CIM [6], Vocell [7], RNN-Guo [8]. Analog LSTM chips: ERA-
LSTM [9], LSTM-Zhao [10], NS-FDN [11]. LSTM power is
normalized to 10 kHz.

this corresponds to the speech formant (see Fig. 3(b)).
Figure 3(a) (bottom panel) shows a schematic of the py-
knogram circuit. Here, nmos Mx is in the subthreshold
regime with a drain current, Ix, given by [13]

Cx
dIx
dt

=
κGm

UT
· (Vu − Vw) · sgn (Vy) · Ix, (1)

where κ is the body-effect coefficient and UT is the
thermal voltage. Ix is also the bias current that controls
the gain of the transconductance amplifiers, and hence
the filter’s center frequency [14]. So, Eqn. (1) con-
tinually adjusts Ix—and hence the center frequency—
to minimize the (Vu − Vw) error. That is, Ix tracks
the most energetic frequency region in the input. The
simulation results of Fig. 3(b) illustrate this behavior,
with Ix tracking the formants of a speech signal.

III. AFUA: FEWER OPERATIONS

Fundamentally, an LSTM is a neuron that selectively
retains, updates or erases its memory of input data [1].
The gated recurrent unit (GRU) is a simplified version

fewer operations

x

h~ z
tanh σ

+ 1
+ -h

buf DAC

r σ

ADC

x64

x63

x2

x1

fewer inputs

Fig. 2: Our approach cuts power consumption by by processing
fewer inputs and by avoiding several operations (greyed out
blocks) of a standard LSTM [12]. We replace the tanh and
sigmoid functions with zero-cost softplus operations.

of the classical LSTM, and it is described with the
following set of equations [12]:

rj = σ([Wrx]j + [Urh⟨t−1⟩]j) (2)
zj = σ([Wzx]j + [Uzh⟨t−1⟩]j) (3)

h̃
⟨t⟩
j = tanh([Wx]j + [U(r⊙ h⟨t−1⟩)]j) (4)

h
⟨t⟩
j = zjh

⟨t−1⟩
j + (1− zj)h̃

⟨t⟩
j , (5)

where x is the input, hj is the hidden state, h̃j is the
candidate state, rj is the reset gate and zj is the update
gate. Also, W∗ and U∗ are learnable weight matrices.

We can replace the GRU with a simpler set of
equations via the following manipulations. The sigmoid
function of Eqn. (3) gives zj a range of (0, 1), and the
extrema of this range reveals the basic mechanism of
the update equation, Eqn. (5). For zj = 0, the update
equation is h

⟨t⟩
j = h̃

⟨t⟩
j . For zj = 1, the update equation

becomes h
⟨t⟩
j = h

⟨t−1⟩
j . Without loss of generality, we

can replace (1 − zj) with zj (this merely inverts the
logic of the update gate). So, replacing (1 − zj) and
rearranging the update equation gives us(

h
⟨t⟩
j − h

⟨t−1⟩
j

)
/zj + h

⟨t−1⟩
j = h̃

⟨t⟩
j , (6)

which is simply a first-order low pass filter with a
continuous-time form of

τ

zj(t)

dhj

dt
+ hj(t) = h̃j(t), (7)

where τ = ∆T , the time step of the discrete-time
system. The gating mechanics of the continuous- versus
discrete-time update equations are equivalent, modulo
the inverted logic: For zj(t) = 0, Eqn. (7) is a low-pass
filter with an infinitely large time constant, and hj(t)

does not change (this is equivalent to h
⟨t⟩
j = h

⟨t−1⟩
j in

discrete time). For zj(t) = 1, Eqn. (7) is a low-pass
filter with a time constant of τ = ∆T . Since the ∆T
time step is small relative to the GRU’s dynamics, a time
constant of τ = ∆T produces hj(t) ≈ h̃j(t) (equivalent
to h

⟨t⟩
j = h̃

⟨t⟩
j in discrete time).

+
-

+
-

+
-

Vu Vy

Vw

GMGM

GMadaptive
bandpass
filter

+
-

Vu
error

fc
Vw

-
+

+
-

1

0

Vy
Vx

Ix
Mx

MUX GM Vu

adaptive
BPF

Cx

(a)

(b)

Fig. 3: (a) Pyknogram filter single channel. (b) Output of 4-
channel pyknogram filter (red lines) overlaid on spectrogram.

Various studies have found the reset gate unnecessary
with slow-changing signals, and also for event detection
[15]. Both these scenarios describe our keyword spotting
application, so we can discard the reset gate.

Finally, if we translate the origins of both hj(t)
and h̃j(t) to 1, then we can replace the tanh with a
saturating function that has a range of (0, 2). Replacing
tanh with min(softplus(·), 2), translating the origin
and discarding the reset gate, we arrive at the Adaptive
Filter Unit for Analog LSTM (AFUA):

zj(t) = min(soft([Wzx]j + [Uz(h(t)− 1)]j), 1)

h̃j(t) = min(soft([Wx]j + [U(h(t)− 1)]j), 2)

τ

zj(t)

dhj

dt
= h̃j(t)− hj(t), (8)

2

Iunit

IX

2Iunit

Iz
Ih

Ih~

Wz

Uz

W

U

Cz

VMM

Mz

Mh~

Fig. 4: Circuit implementation of the AFUA unit. Equa-
tion (11) is implemented as a current-mode adaptive low
pass filter. The softplus is implemented with diode-connected
transistors, whose outputs clip due to the circuit’s finite power
supply voltages. The vector matrix multiplier (‘VMM’) is
implemented using conventional circuitry [17].

where we have also replaced the sigmoid with a clipped
softplus. The benefit of the softplus is that we can
implement it as a diode-connected transistor, which costs
minimal area and zero power (see e.g. Mz in Fig. 4).

The AFUA is a type of continuous-time GRU. But
while the GRU contains 3 Hadamard multiplications,
the AFUA contains none. The AFUA has no reset gate.
Finally, as Fig. 4 shows, the AFUA avoids the overhead
of operational amplifiers, current/voltage converters and
internal digital/analog converters found in other analog
LSTM implementations [11, 9, 10]. Fewer operations
and smaller overhead means less power consumption.

IV. AFUA CIRCUIT IMPLEMENTATION

Figure 4 shows a schematic of the AFUA circuit
implementation. The drain currents of Mz and Mh̃ are

Iz = min(soft([WzIx]+ [Uz(Ih− Iunit)]), Iunit), (9)

Ih̃ = min(soft([WIx]+[U(Ih−Iunit)]), 2Iunit). (10)

Also, from the translinear loop principle, current Ih is
defined by [18, 19]:

CzUT

κIunit︸ ︷︷ ︸
τ

Iunit
Iz

dIh
dt

= Ih̃ − Ih. (11)

500 1000 1500 2000

epoch

0.2
0.4
0.6
0.8

v
a
li

d
.
a
cc

.

GRU

LSTM

AFUA

GRU LSTM AFUA

0.85

0.9

0.95

te
st

 a
cc

.

Fig. 5: Training curves and test set performance for keyword
spotting based on Google Speech Commands dataset [16].

Eqns. (9), (10) and (11) are the current-mode repre-
sentations of the AFUA. When Iz is close to zero, the
hidden state (represented by Ih in Eqn. (11)) changes
slowly, and the AFUA is able to retain long-term
memory. When Iz is large, the state’s rate of change
increases, and the AFUA replaces its memory with
newly-arrived information via Ih̃ in Eqn. (11).

V. RESULTS AND CONCLUSION

We evaluated the AFUA against the GRU and the
classical LSTM in a 10-word (spoken digits) keyword
spotting task based on the Google Speech Commands
dataset [16]. We implemented the following network
architecture in Tensorflow: two 16-unit recurrent layers
(AFUA, GRU, or LSTM cells); 10-unit linear layer with
ReLU; 10-unit softmax layer. The train/validation/test
data split was 53/17/30. We used the ADAM optimizer,
mini-batch sizes of 1024 and trained for 2000 epochs.

The Fig. 5 results show that AFUA performs similarly
to GRU and LSTM. The AFUA’s advantage is evident
from Table I: with fewer inputs and fewer operations
per neuron, the AFUA’s computational complexity is up
to 100× less than that of other approaches. Also, the
AFUA is a smaller model, as illustrated by its parameter
count (Fig. 6). Finally, the AFUA implemented in a 0.18
µm 1.8 V process with Iunit = 0.2 nA would consume
0.76 µW. This power consumption meets the constraints
of a self-powered sensor.

REFERENCES

[1] Sepp Hochreiter and Jürgen Schmidhuber. “Long
short-term memory”. In: Neural computation 9.8
(1997), pp. 1735–1780.

[2] Infineon. IM69D130V01XTSA1 Datasheet. Dec.
2019.

[3] Knowles. MM20-33639-B116 Datasheet. Mar.
2018.

[4] Shad Roundy, Paul K Wright, and Jan Rabaey.
“A study of low level vibrations as a power
source for wireless sensor nodes”. In: Computer
communications 26.11 (2003), pp. 1131–1144.

3

Model Neuron Type Inputs, n Neurons, m Ops/Neuron Total Ops
This work AFUA layer 1 10 16 53 [2(n + m) + 1] 1,888layer 2 16 16 65 [2(n + m) + 1]

RNN-Guo [8] RNN 256 256 770 [n + 2m + 2] 197,120
Vocell [7] LSTM 39 64 610 [4(n + m) + 3m + 6] 39,040
LSTM-CIM [6] LSTM 40 128 1062 [4(n + m) + 3m + 6] 135,936

TABLE I: Total number of operations in the recurrent layer of this work versus state-of-the-art neural network models for
10-word keyword spotting [16]. Softplus, addition and subtraction are zero-cost analog operations.

Fig. 6: Power consumption, accuracy and number of param-
eters for the neural network models listed in Table I. AFUA
power consumption is calculated for a 0.18 µm 1.8 V process
with Iunit = 0.2 nA. If combined with a 34 µW analog
microphone [3], AFUA meets the Fig. 1 power budget.

[5] Paul D Mitcheson et al. “Energy harvesting from
human and machine motion for wireless elec-
tronic devices”. In: Proceedings of the IEEE 96.9
(2008), pp. 1457–1486.

[6] Clemens JS Schaefer et al. “LSTMs for Key-
word Spotting with ReRAM-based Compute-In-
Memory Architectures”. In: 2021 IEEE Interna-
tional Symposium on Circuits and Systems (IS-
CAS). IEEE. 2021, pp. 1–5.

[7] Juan Sebastian P Giraldo et al. “Vocell: A 65-
nm Speech-Triggered Wake-Up SoC for 10-uW
Keyword Spotting and Speaker Verification”. In:
IEEE Journal of Solid-State Circuits 55.4 (2020),
pp. 868–878.

[8] Ruiqi Guo et al. “A 5.1 pJ/neuron 127.3
us/inference RNN-based speech recognition pro-
cessor using 16 computing-in-memory SRAM
macros in 65nm CMOS”. In: 2019 Symposium
on VLSI Circuits. IEEE. 2019, pp. C120–C121.

[9] Jianhui Han et al. “ERA-LSTM: An efficient
ReRAM-based architecture for long short-term
memory”. In: IEEE Transactions on Parallel and
Distributed Systems 31.6 (2019), pp. 1328–1342.

[10] Zhou Zhao et al. “Long short-term memory net-
work design for analog computing”. In: ACM
Journal on Emerging Technologies in Computing
Systems (JETC) 15.1 (2019), pp. 1–27.

[11] Qin Li et al. “NS-FDN: Near-Sensor Processing
Architecture of Feature-Configurable Distributed
Network for Beyond-Real-Time Always-on Key-
word Spotting”. In: IEEE Transactions on Cir-
cuits and Systems I: Regular Papers 68.5 (2021),
pp. 1892–1905.

[12] Kyunghyun Cho et al. “Learning phrase repre-
sentations using RNN encoder-decoder for sta-
tistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

[13] Christian C. Enz, François Krummenacher, and
Eric A. Vittoz. “An analytical MOS transistor
model valid in all regions of operation and ded-
icated to low-voltage and low-current applica-
tions”. In: Analog Integr. Circuits Signal Process.
8.1 (1995), pp. 83–114.

[14] Arun Rao and Kofi Odame. “Estimating the short-
time bandwidth of wheeze sounds”. In: 2015
IEEE Biomedical Circuits and Systems Confer-
ence (BioCAS). IEEE. 2015, pp. 1–4.

[15] J Amoh and K Odame. “An optimized recurrent
unit for ultra-low-power keyword spotting”. In:
Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies 3.2
(2019), pp. 1–17.

[16] Pete Warden. “Speech commands: A dataset for
limited-vocabulary speech recognition”. In: arXiv
preprint arXiv:1804.03209 (2018).

[17] Jonathan Binas et al. “Precise deep neural net-
work computation on imprecise low-power analog
hardware”. In: arXiv preprint arXiv:1606.07786
(2016).

[18] J Mulder et al. “Dynamic translinear RMS-DC
converter”. In: Electronics letters 32.22 (1996),
pp. 2067–2068.

[19] K Odame and B Minch. “The translinear prin-
ciple: a general framework for implementing
chaotic oscillators”. In: Int’l Journal of Bifurca-
tion and Chaos 15.08 (2005), pp. 2559–2568.

4

