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Abstract—We present a novel gated recurrent neural network
to detect when a person is chewing on food. We implemented
the neural network as a custom analog integrated circuit in a
0.18 ym CMOS technology. The neural network was trained on
6.4 hours of data collected from a contact microphone that was
mounted on volunteers’ mastoid bones. When tested on 1.6 hours
of previously-unseen data, the analog neural network identified
chewing events at a 24-second time resolution. It achieved a recall
of 91% and an Fl-score of 94% while consuming 1.1 W of
power. A system for detecting whole eating episodes—like meals
and snacks—that is based on the novel analog neural network
consumes an estimated 18.8 uW of power.

Index Terms—Eating detection, wearable devices, analog
LSTM, neural networks.

I. INTRODUCTION

Monitoring food intake and eating habits are important
for managing and understanding obesity, diabetes and eating
disorders [1], [2], [3]. Because self-reporting is unreliable,
many wearable devices have been proposed to automatically
monitor and record individuals’ dietary habits [4], [5], [6],
[7]. The challenge is that these devices store or transmit
raw data for offline processing. This is a power-consumptive
approach that requires a bulky battery or frequent charging,
which intrudes on the user’s normal daily activities and is
thus prone to poor user adherence and acceptance [8], [9],
[10], [11].

We recently addressed this problem with a long short-term
memory (LSTM) neural network for eating detection that can
be embedded on the wearable device [12], [13]. However,
that approach required a power-consumptive analog-to-digital
converter (ADC). It also required the microcontroller unit
(MCU) to unnecessarily spend power processing irrelevant
data.

Analog LSTM neural networks have been proposed as a
way to eliminate the ADC and also to minimize the microcon-
troller’s processing of irrelevant data. Unfortunately, the state-
of-the-art analog LSTMs [14], [15], [16], [17], [18] are imple-
mented with operational amplifiers (opamps), current/voltage
converters, Hadamard multiplications and internal ADCs and
digital-to-analog converters (DACs). These peripheral compo-
nents represent a significant amount of overhead cost in terms
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Fig. 1. Block diagram of proposed eating detection system. From the contact
microphone output, the ZCR and RMS blocks extract features based on
zero-crossing rate and root-mean-square. The analog neural network (labelled
‘AFUA’) processes these features and produces a one-hot encoded output that
predicts the presence or absence of a chewing event. The microcontroller
(‘uC’) merges and filters the individual chewing events into whole eating
episodes. The analog signal processing chain up to the AFUA block consumes
1.8 uW of power. The microcontroller is active only 9 % of the time, during
which it consumes 180 uW of power.

of power consumption, which diminishes the benefits of an
analog LSTM (see Table I).

In this paper, we present the design, implementation, analy-
sis and measurement results of a novel analog integrated circuit
LSTM for embedded eating event detection that eliminates the
need for a power-consumptive ADC. Unlike previous analog
LSTM implementations, our solution contains no internal
DACs, ADCs, opamps or Hadamard multiplications. Our novel
approach is based on a current-mode adaptive filter, and it
eliminates over 90% of the power requirements of a more
conventional solution.

II. EATING DETECTION SYSTEM

Figure 1 shows our proposed Adaptive Filter Unit for
Analog (AFUA) long short-term memory as part of a signal
processing system for detecting eating episodes. The input
to the system is produced by a contact microphone that is
mounted on the user’s mastoid bone. Features are extracted
from the contact microphone signal and input to the AFUA
neural network, which infers whether or not the user is chew-
ing. The AFUA’s output is a one-hot encoding ((2, 0)=chewing;
(0,2)=not chewing) of the predicted class label. Finally, a
microcontroller processes the predicted class labels and groups
the chewing events into discrete eating episodes, like a meal,
or a snack [4], [5]. Following is a detailed description of
the feature extraction and neural network components of the
system.
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. Power Consumption Overhead (%
Architecture | LSTM Type mxn ADC | DAC | Buffer [ Opamp, V/(I [) Total
This work AFUA 10 x 16 0 0 3 0 3
[19] GRU 10 x 16 0 0 32 0 32
[17] Classical LSTM | 128 x 128 12 25 1 30 68
[18] Classical LSTM | 16 x 16 3 17 8 1 29

TABLE T

THE PROPOSED LSTM (‘AFUA’) HAS THE FEWEST PERIPHERAL COMPONENTS AND HENCE THE LOWEST POWER CONSUMPTION OVERHEAD (SEE
SECTION IV-A DERIVATION). m AND n ARE NUMBER OF HIDDEN STATES AND INPUTS, RESPECTIVELY. NOTE: FOR A GIVEN ANALOG LSTM
ARCHITECTURE, THE LARGER THE m X m PRODUCT, THE SMALLER THE OVERHEAD. FOR FAIR COMPARISON, WE REPORT AFUA OVERHEAD COST FOR
m X n = 10 X 16. THE CORE PROCESSING BLOCK FOR ALL THE LSTM ARCHITECTURES IS BASED ON THE SAME BASIC VECTOR MATRIX MULTIPLIER
(VMM) STRUCTURE. IF WE IMPLEMENT EACH ARCHITECTURE IN THE SAME PROCESS TECHNOLOGY NODE WITH THE SAME VMM, THEN THE
ARCHITECTURE WITH THE LEAST OVERHEAD WILL CONSUME THE LEAST TOTAL POWER.
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Fig. 2. Typical time series data for chewing and talking events. (a) Data
from contact microphone shows that chewing (time < O s) is characterized
by quasi-periodic bursts. No quasi-periodicity is observed during talking (time
> 0's). (b) Duration between signal bursts (‘Tperioq’)- For the chewing event
(time < 0's), Tperioa is relatively constant. In contrast, Tperioq varies widely
during the talking event. (c) Features extracted from microphone output.

A. Feature Extraction

As demonstrated in Fig. 2, chewing is characterized by
quasi-periodic bursts of large amplitude, low frequency signals
that can be measured by a contact microphone or accelerom-
eter that is mounted on the head [12], [5]. We can use the
root mean square (RMS) and the zero-crossing rate (ZCR)
to capture the signal’s amplitude and frequency, respectively.
A second ZCR operation applied to the RMS and the initial
ZCR will produce information about the signal’s periodicity.
The RMS block is simply an envelope detector [20]. The ZCR
block comprises a zero-crossing detector [21] followed by
a bandlimited transconductance amplifier that integrates the
detected zero crossings over time.
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B. Analog LSTM

Fundamentally, an LSTM is a neuron that selectively retains,
updates or erases its memory of input data [22]. The gated
recurrent unit (GRU) is a simplified version of the classical
LSTM, and it is described with the following set of equations
[23]:

rj = o([W.x]; +[Ushy_p])) (1)
z; = o([W.x]; + [U;hy_y))) 2
ﬁj<.t> = tanh([Wx]; + [U(r © hy_1y)]y) &)
) o

where x is the input, h; is the hidden state, l~1j is the candidate
state, r; is the reset gate and z; is the update gate. Also, W,
and U, are learnable weight matrices.

To implement the GRU in an efficient analog integrated
circuit that contains no DACs, ADCs, operational amplifiers
or multipliers, we can transform Eqn. (1)-(4) as follows. The
o function of Eqn. (2) gives z; a range of (0,1), and the
extrema of this range reveals the basic mechanism of the
update equation, Eqn. (4). For z; = 0, the update equation
is h;t> = ﬁ;w. For z;
h§t> = hj<.t_1>. Without loss of generality, we can replace
(1 — z;) with z; (this merely inverts the logic of the update
gate, and inverts the sign of the W, and U, weight matrices).
So, replacing (1 — z;) and rearranging the update equation
gives us

1, the update equation becomes

_ 7

j

®)

which is simply a first-order low pass filter with a continuous-
time form of

(47 =17) 1™

r_dn

hi(t) = h;(t), (6)

where 7 = AT, the time step of the discrete-time system.
The gating mechanics of the continuous- versus discrete-time
update equations are equivalent, modulo the inverted logic: For
zj(t) = 0, Eqn. (6) is a low-pass filter with an infinitely large
time constant, and h;(t) does not change (this is equivalent
to h§-t> = hétil) in discrete time). For z;(t) = 1, Eqn. (6) is
a low-pass filter with a time constant of 7 = AT Since the
AT time step is small relative to the GRU’s dynamics, a time
constant of 7 = AT produces h;(t) ~ h;(t) (equivalent to
h§»t> = ﬁ§t> in discrete time).
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Various studies [24], [25], [26], [13] have found the reset
gate unnecessary with slow-changing signals, and for event
detection. As these scenarios describe our eating detection
application, we can discard the reset gate.

Finally, if we translate the origins [27] of both h;(t) and
h;(t), then we can replace the tanh with a saturating function
that has a range of (0, 1). Such a saturating function can easily
be implemented in analog circuitry, by taking advantage of the
unidirectional nature of a transistor’s drain-source current. We
replace both the tanh and the o with the following saturating
function,
max(y, 0)?

T 1+ max(y,0)2’ ™

fy)

translate the origin and discard the reset gate to arrive at the
Adaptive Filter Unit for Analog LSTM (AFUA):

sz = f([wzx}j + [Uz(h - 1) + bz]j) ®)
hj = f([Wx]; +[U(h—1)+b];) )
7 dh; ~
g@lz2hfm (10)

where [-]; is the j’th element of the vector. Also, x is the input,
h; is the hidden state and }Nlj is the candidate state. The variable
T is the nominal time constant, while z; controls the state
update rate in Eqn. (10). W, U,, W, U are learnable weight
matrices, while b,, b are learnable bias vectors. Simulation
results (Fig. 3) for a multi-class machine learning task show
that the AFUA performs with a comparable level of accuracy
as the GRU and classical LSTM.
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Fig. 3. Simulation results (test set accuracy) for 10-class keyword spotting
task [28], [29]. The simulated neural network architecture comprises: a 16-
unit LSTM input layer, a second 16-unit LSTM layer, a 10-unit dense layer
(ReLU activations) and a 10-unit dense output layer (softmax activations). We
implemented the LSTM layers first with GRU [23], then classical LSTM [22]
and finally AFUA neurons.

III. ANALOG LSTM CIRCUIT IMPLEMENTATION

Figure 4 shows the high-level block diagram of the AFUA
neural network. It comprises two AFUA cells (with corre-
sponding hidden states hy and k1), and it accepts two inputs,
zo and 1. Unlike previous LSTMs [14], [15], [16], [17], [18],
the AFUA network contains no digital-to-analog converters,
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Fig. 4. High level architecture of the AFUA neural network, which has a
two-dimensional input feature vector, x = [xo,:m]T. The network keeps
a memory of past inputs by feeding back its hidden states, ho, hi, to the
vector matrix multiplier (VMM). The persistence of the network’s memory
depends on the time constants, zg, 21, of the adaptive low pass filters in the
‘update’ block. Finally, the ‘activation’ block provides saturating nonlinearities
described by Eqn. (7).

analog-to-digital converters, operational amplifiers or four-
quadrant multipliers. Avoiding these power-consumptive com-
ponents is what makes the AFUA implementation so efficient.
Following are the circuit implementation details of the AFUA.

A. Dimensionalization

To realize the AFUA Eqns. (8), (9), (10) and (7) as an analog
circuit, we first ‘dimensionalize’ each variable and implement
it as the ratio of a time-varying current and a fixed unit current,
Lunit [30], [31]. For instance, we represent the update gate
variable, z;, as I, /Init.

B. Activation Function

The Eqn. (7) function is implemented as the current-starved
current mirror shown in Fig. 5. Kirchhoff’s Current Law
applied to the source of transistor Mg gives

Iout = I3 = Iunit - I4~ (11)

The transistors are all sized equally, meaning that, from
Kirchhoff’s Voltage Law, the gate source voltage of transistor
M3 is

Vass = 2Vas1 + Vasa — 2Vaga, (12)

where we have assumed that the body effect in My and M,
is negligible. If we operate the transistors in the subthreshold
region, then Eqn. (12) implies

IL,I?
Lowe =I5 = 75— (13)
unit
Combining Eqns. (11) and (13) gives us
Iunit112
Low = 5L (14)
IL21nit + Il2
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Fig. 5. Activation function circuit schematic. A version of the input signal,
Iin, is reflected as current Iy¢. The tail bias current source of the M3-My
differential pair limits the output current to lout < Iynit- Also, the one-
sidedness of the nMOS drain current limits /oyt to positive values only. In
summary, the activation function circuit produces 0 A < Iout < Iynit-

10— T T
O measured
th
3 eory
< 6
£
]
»—1° 4
2
0 . . . . .
0 10 20 30 40 50

L (@A)

Fig. 6. Activation function transfer curve. Chip measurements of the Fig. 5
circuit closely match the theoretically-predicted behavior of Eqn. (15) for
Iynit = 10.5 nA. The saturating behavior is analogous to that of the original
GRU’s sigmoid.

Now, the current flowing through a diode-connected nMOS is
unidirectional, meaning [; = max([i,,0), and we can write

max(1iy, 0)?
I2 .. + max([i,0)2’

unt

Tout = Lunis - (15)
which is a dimensionalized analog of Eqn. (7). The mea-
surement results in Fig. 6 illustrate the nonlinear, saturating
behavior of this activation function.

C. State Update

The AFUA state update, Eqn. (10), is implemented as the
adaptive filter shown in Fig. 7. The currents [, I; and I,
represent the hidden state hj;, the candidate state Bj and
the update gate, z;, respectively. From the translinear loop
principle, the Fig. 7 circuit’s dynamics can be written as [32],
[30]

CzUT Iunit dIh
Kf-[unit Iz dt
——

T

=2I; — I, (16)
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Fig. 7. State update circuit schematic. The output I}, is a low-pass-filtered
version of the input, 21,. The filter’s time constant is inversely proportional
to the value of the current I.. So, large values of I increase the rate at which
I, updates to 21 [ while small values of I, slow down this process.
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Fig. 8. State update circuit response. Chip measurements of the Fig. 7 circuit
show that the output, I}, follows the input, I 7, at a rate that is determined by
the value of current .

where x is the body-effect coefficient and Ut is the thermal
voltage [33]. Just as z; does for h; in Eqn. (10), I. controls
the update speed of I, (see Fig. 8).

D. Vector Matrix Multiplication

Figure 9 depicts the components of our vector-matrix mul-
tiplication (VMM) block. These are the soma and synapse
circuits that are common in the analog neuromorphic literature
[34]. Crucially, the soma-synapse architecture is current-in,
current-out. This means that, unlike other approaches for
implementing GRU and LSTM networks [15], [16], [17],
the VMM does not need power-consumptive operational am-
plifiers to convert signals between the current and voltage
domains.

IV. ANALOG LSTM CIRCUIT ANALYSIS

The following subsections address various practical aspects
of an actual AFUA implementation.

A. Current Consumption

Since the activation function, Eqn. (7), has a range of (0, 1),
the z; and h; variables are likewise limited to (0,1). Also,
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Fig. 9. Vector matrix multiplier circuit components. (a) The soma is as a
current-mode buffer. (b) The synapse is a programmable current mirror, with
gain stored in registers Wsgn, Wo, W1. These represent the neural network’s
3-bit quantized learned weights.

from Eqn. (10), h; spans (0,2). This means that all update
gate and candidate state currents have a maximum value of
Tunit, while the hidden state currents have a maximum value of
21 nit- With this information, we can calculate upper-bounds
on the current consumption of each circuit component.

1) Activation Function: Not counting the input current that
is supplied by the VMM, Fig. 5 shows that the only current
consumed by the activation function block is the differential-
pair tail current of I,,;,;. There are two activation functions per
AFUA cell (one each for z; and fzj). So, for an m-unit AFUA
layer, the activation function blocks draw a total current of
m X 21 unit -

2) State Update: The total current flowing through the four
branches of the state update circuit (Fig. 7) is oI, + 21, + I,
which has a worst-case value of 6/,,;;. For our m-unit AFUA
network, the state update circuits consume at most m X 6.1 p;t.

3) VMM soma: The soma is a current-mode buffer that
drives a differential signal onto each row of the VMM (see
Fig. 9). For the somas on the input and bias rows, the
maximum current consumption is 2/,,;;. The somas driving
the hidden state rows consume at most 4/,,;; each. So, with
n inputs, m hidden states and one bias row, the somas will
consume a maximum total current of (n 4+ 2m + 1) X 2/pi¢.

4) VMM core: As depicted in Fig. 9, each multiplier
element in the VMM core comprises a number of current
sources that are switched on or off, depending on the values
of the weight bits (Wsgn, Wo, W1). At worst, all current sources
are switched on, in which case the VMM elements that process
state variables each consume 61,,;;, while those that process
input variables or biases each consume 3/,,;;. The maximum
current draw of each VMM column for an n-input AFUA layer
with m hidden states is therefore (n+ 2m+ 1) X 31 ,pit. There
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are 2m columns, to give a total maximum VMM core current
consumption of m(n + 2m + 1) X 6L ypit.

5) Total Current Consumption: From the previous subsec-
tions, we conclude that the worst-case total current consump-
tion of an m-input AFUA layer with m hidden states is

Tiow < (m(14+6(n + 2 Am 4 2n 4 2) X Loms, (17
tot < (M(14 +6(n +2m)) +4m + 2n + 2) e, (17)

core VMM soma

where ‘core’ includes the activation function, VMM core
and state update current consumption. The VMM soma is
peripheral to the AFUA’s operation and represents overhead
cost. For instance, a 16-input, 10-unit AFUA layer would
spend 3 % of its power budget as overhead.

Empirically, we found that the average current consumption
of some of the AFUA blocks is significantly lower than their
estimated worst-case values. In particular, the VMM consumes
only 481 ,,;; on average. This leads to an average AFUA total
current consumption of 627 ,,;;. The specific choice of It
depends on the desired operating speed, as we discuss in the
following subsection.

B. Estimated Power Efficiency

The power efficiency of neural networks is conventionally
measured in operations per Watt. But this metric does not
apply directly to a system like the AFUA, since it executes all
of its operations continuously and simultaneously. However,
we can estimate the AFUA’s power efficiency by considering
the performance of an equivalent discrete time system.

To arrive at the discrete-form AFUA unit, we first replace
the state variables of Eqns. (8), (9) and (10) with their discrete-
time counterparts. This includes the discretization dh;/dt =
(h<-t> - h§t71>)/AT, where AT is the sampling period. Then,

J
we set 7 = AT to produce the following expression.

Zj = f([WzX]j + [UZ(h - 1) + bZ]j>
BT = f(IWxl; + [U(by,_y~1) + b))
h;t> = Z]2ilj<t> — (]. — Zj)h§t_1>. (18)

For our application, W, W, are 2 x 2 matrices, U, U, are
1x2 vectors and z; are scalars. So, each discretized AFUA unit
executes 14 multiply operations per time step. Also, there are 2
divisions due to the two activation functions (see Eqn. (7)). Not
counting additions and subtractions, each discretized AFUA
unit executes 16 operations per time step, to make for a total
of 32 operations/step performed by the network. Assuming the
sampling period of AT = 2 ms used in our previous eating
detection systems [7], [12], this implies the AFUA performs
the equivalent of 16,000 operations per second.
Now, setting 7 = AT = 2 ms requires a unit current of

C,U C,U
T —500. 2222,
K

(19)

Iunit =

where C, = 57 {F is the integrating capacitor of the translinear
loop filter, Ut = 26 mV at room temperature and x ~ 0.42.
This gives Iunir = 1.8 pA. With a total current consumption
of 621 i, a voltage supply of 1.8 V and 16K operations
per second, the AFUA’s equivalent operations per Watt is 76
TOps/W.
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Fig. 10. Monte Carlo analysis performed for 250 runs, including mismatch
and process variation, as well as power supply voltage and temperature
corners of {1.6V,2V} and {0°C,35°C}, respectively. Nominal power
supply voltage and temperature are 1.8 V/, 27°C. Median accuracy is 90 %.

C. Mismatch

Due to random variations in doping and geometry, tran-
sistors that are nominally identical will exhibit mismatch
when fabricated in a physical ASIC. To understand the effect
of mismatch and other non-idealities on the AFUA neural
network’s performance, we performed Monte Carlo analyses
with foundry-provided manufacturing and test data. The Monte
Carlo analyses included mismatch and process variation, as
well as power supply voltage and temperature corners of
{1.6V, 2V} and {0°C,35°C'}, respectively.

Figure 10 shows the variation in classification accuracy for
250 Monte Carlo runs of one implementation of the AFUA
neural network. The median accuracy across all runs is 0.90.
Most of the variation in accuracy is due to mismatch, and the
AFUA neural network is largely robust to temperature, voltage
and process variation. The neural network is also unaffected
by circuit noise (this is a direct result of the network’s
ability to generalize). To mitigate the effect of mismatch,
we can use larger transistors [35], calibrate the network’s
learning algorithm for each individual chip [34], or incorporate
mismatch data into a fault-tolerant learning algorithm [36].

V. EXPERIMENTAL METHODS
A. Data Collection

Training and testing data was collected from study volun-
teers in a laboratory setting. All aspects of the study protocol
were reviewed and approved by the Dartmouth College Institu-
tional Review Board (Committee for the Protection of Human
Subjects-Dartmouth; Protocol Number: 00030005).

The data used for this study was previously collected in a
controlled laboratory setting from 20 participants (8 females,
12 males; aged 21-30) that were instructed to perform both
eating and non-eating-related activities. During these activities,
a contact microphone (see Fig. 11) was secured behind the ear
with a headband, to measure any acoustic signals present at
the tip of the mastoid bone [6]. The output of the contact
microphone was digitized and stored using a 20 kSa/s, 24-bit
data acquisition device (DAQ).
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Fig. 11. Left panel: a contact microphone was used to collect acoustic data
from the mastoid bone as study participants performed various eating and
non-eating tasks [6]. Right panel: prototype of the complete wearable device
that we are developing for dietary monitoring [7].

Participants were asked to eat a variety of foods—including
carrots, protein bars, crackers, canned fruit, instant food, and
yogurt—for at least 2 minutes per food type. This resulted in
a 4 hour total eating dataset. Non-eating activities included
talking and silence for 5 minutes each and then coughing,
laughing, drinking water, sniffling, and deep breathing for 24
seconds each. This resulted in 4 hours total of non-eating data.
Each activity occurred separately and was classified based on
activity type as eating or non-eating.

We down-sampled the DAQ data to 500 Hz and applied a
high pass filter with a 20 Hz cutoff frequency to attenuate
noise. We segmented the positive class data (chewing), and
negative class data (not chewing) into 24-second windows with
no overlap. The positive and negative class data were labelled
with the one-hot encoding (2,0) and (0,2), respectively.
Finally, we extracted the ZCR-RMS and ZCR-ZCR features
of the windows to produce 2-dimensional input vectors to be
processed by the AFUA network.

B. Neural Network Training

For training, the AFUA neural network was implemented
in Python, using a custom layer defined by the discretized
system of Eqn. (18). Chip-specific parameters were extracted
for each neuron and incorporated into the custom layers. The
AFUA network was trained and validated on the laboratory
data (train/valid/test split: 68/12/20) using the TensorFlow
Keras v2.0 package. Training was performed with the ADAM
optimizer [37] and a weighted binary cross-entropy loss func-
tion to learn full-precision weights. Since the training data had
a much higher sampling rate (500 Sa/s) than the bandwidth of
the acoustic signals of interest (20 Hz), there was negligible
information lost in the training process.

Python training was followed by a quantization step that
converted the full-precision weights to signed 3-bit values
(0,£1,+£2,43). An alternative approach would have been to
directly incorporate the quantization process into the network’s
computational graph [13]. However, we found that such an
approach only slows down training with no improvement in
our network’s classification performance.
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Fig. 12.  Accuracy and loss training graphs for discretized AFUA neural
network. We performed training in Python using the TensorFlow Keras v2.0
package. Validation set performance tracked that of the training set, indicating
good generalization. The learned weights were quantized and programmed
onto the AFUA ASIC’s on-chip registers.

VMM core

200 pm ———

activation

280 um

Fig. 13. Die photo of the AFUA ASIC, implemented in a 0.18 pm CMOS
process. The synapse circuits (labelled “VMM core’) consume most of the
200 pmx280 pm circuit area.

C. Chip Measurements

The AFUA was implemented, fabricated and tested as an
integrated circuit in a standard 0.18 pm mixed-signal CMOS
process with a 1.8 V power supply. To simplify the measure-
ment process and associated instrumentation, the ASIC I/O
infrastructure includes current buffers that scale input currents
by 1/100 and that multiply output currents by 100.

The AFUA neural network was programmed by storing the
3-bit version of each learned weight onto its corresponding
on-chip register in the VMM array.

The network was then evaluated on the test dataset. Specif-
ically, each 24-second long window of 2-dimensional feature
vectors from the test dataset was dimensionalized and scaled
to 100 X Iynit and input to the ASIC with an arbitrary
waveform generator. We set It ~ 10 nA with an off-
chip resistor. According to Eqn. (19), this I,z creates a
time constant of 7 = 0.36 us, allowing for faster-than-real-
time chip measurements—an important consideration, given
the large amount of test data to be processed.

Output currents Iy, In1 were each measured from the volt-
age drop across an off-chip sense resistor. The ASIC’s steady-
state response was then taken as the classification decision. An
output value of (11, Ipo) = (2Lunit, 0) means that the circuit
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Fig. 14. AFUA chip measurement response to different input patterns

(Iz1,Iz0) taken from the test dataset. [0 is the output of the cascade of
an RMS block and ZCR block. I is the output of the cascade of two ZCR
blocks. The circuit’s class prediction is encoded as output currents (I1,1, Ip0)-

classified the input as eating, while (11, Ip0) = (0,2@unit)
corresponds to non-eating. From these measurements, we
calculated the algorithm’s test accuracy, loss, precision, recall,
and Fl-score.

VI. RESULTS AND DISCUSSION
A. Classification Performance

Figure 14 shows the AFUA chip’s typical response to input
data. The input currents I, I, represent the ZCR-RMS and
ZCR-ZCR features extracted from the contact microphone
signal. Inputting a stream of I, I,o patterns produces output
currents 1, I, which represent the hidden states of the
AFUA neural network.

According to our encoding scheme, (11,1, I50) = (2Lunit, 0)
means that the circuit classified the input as chewing, while
(In1,Ino) = (0,2[4ni) corresponds to a prediction of not
chewing. But the presence of noise and circuit non-ideality
produces some ambiguity in the encoding: some AFUA output
patterns can be interpreted as either chewing or not chewing,
depending on the choice of threshold used to distinguish
between 0 A and 2[,;;. Figure 15 is the receiver operating
characteristic curve (ROC) produced by varying this threshold
current. The highlighted point on the ROC is a representative
operating point, where the classifier produced a sensitivity of
0.91 and a specificity of 0.96. This corresponds to a false
alarm rate of (1—specificity) = 0.039.

B. System-level Considerations

In this section, we consider the impact of using the AFUA
neural network in a complete eating event detection system. To
process a 500 Hz signal, the ZCR and RMS feature extraction
blocks consume a total of 0.68 W [20]. Also, the AFUA
network consumes 1.1 pW, assuming I,nic = 10 nA. Finally,
a microcontroller from the MSP430x series (Texas Instruments
Inc., Dallas, TX) running at 1 MHz consumes 180 uW when
active and 0.72 4W when in standby mode [40].

The feature extraction and AFUA circuitry are always on,
while the microcontroller remains in standby mode until a
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[ | Window Size (s) | Accuracy | F1-Score | Precision | Recall | Power (mW) |

This work 24 0.94 0.94 0.96 0.91 0.019

FitByte [38] 5 - - 0.83 0.94 105

TinyEats [12] 4 0.95 0.95 0.95 0.95 40

Auracle [6] 3 0.91 - 0.95 0.87 OFFLINE

EarBit [4] 35 0.90 0.91 0.87 0.96 OFFLINE

AXL [5] 20 - 0.91 0.87 0.95 OFFLINE
TABLE 1T

COMPARISON BETWEEN PROPOSED EATING DETECTION SYSTEM AND PREVIOUS SOLUTIONS. THREE OF THE CLASSIFICATION ALGORITHMS [6], [4], [5]
WERE IMPLEMENTED OFFLINE; SINCE THESE ARE NOT EMBEDDED SOLUTIONS, THEIR POWER CONSUMPTION IS NOT REPORTED.

avg. AUROC=0.97468
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e
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Fig. 15. Receiver operating characteristic curve (ROC) from AFUA chip
measurements. These results were produced from repeated AFUA chip mea-
surement responses to 1.6 hours of previously-unseen test data. Circuit noise
produces slightly different performance from one measurement to another,
with the area under ROC (AUROC) ranging from 0.95 to 0.99 (average
AUROC=0.97). The highlighted point corresponds to a sensitivity of 0.91
and a specificity of 0.96.
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Fig. 16. Power consumption of eating detection system. The feature extraction
and AFUA circuitry continuously consume 1.8 puW of power. The micro-
controller is active for 9% of the time, during which it consumes 180 pW
of power. For the remaining 91% of the time, the microcontoller consumes
0.72 pW while in standby mode. On average (red dashed line), the whole
system consumes an estimated 18.8 pW.
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potential chewing event is detected. The fraction of time the
microcontroller is in the active mode depends on how often the
user eats, as well as the sensitivity and specificity of the AFUA
network. Assuming the user spends 6% of the day eating [39],
then, using the classifier operating point highlighted in Fig. 15,
the fraction of time that the microcontroller is active is

ACTIVE EAT X SENS + (1 — SPEC) x (1 — EAT)

0.06 x 0.91 + (1 —0.96) x (1 — 0.06)

0.09. (20)

So, the microcontroller consumes an average of 180 pWW x
0.09+0.72 pW x (1 —0.09) = 16.9 uW. As Fig. 16 shows,
the average power consumption of the complete AFUA-based
eating detection system is 18.8 puW.

Table II compares our work to other recent eating detection
solutions. The different approaches all yield generally the same
level of classification accuracy, but our work differs in one
critical aspect: while others depend on offline processing, or
on tens of milliWatts of power to operate, our approach only
requires an estimated 18.8 pW.

C. Analog versus Digital LSTM

The AFUA neural network has a total power consumption
of 1.1 uW. Unlike a digital LSTM implementation, the AFUA
network is an analog circuit and does not require a front-end
ADC. If we attempted to implement the system with a digital
LSTM [41], [42], then it would require a 12-bit, 500 Sa/s
front-end ADC [7], [43] and this ADC alone would consume
over 3 uW of power [44]. Note, the ADC would itself require
an ADC driver, which typically consumes even more power
than the ADC [45]; any power efficiency benefits of a digital
LSTM are overwhelmed by the power demands of the ADC
and ADC driver.

VII. CONCLUSION

We have introduced the AFUA—an adaptive filter unit
for analog long short-term memory—as part of an eating
event detection system. Measurement results of the AFUA
implemented in a 0.18 ym CMOS technology showed that
it can identify chewing events at a 24-second time resolution
with a recall of 91% and an F1-score of 94%, while consuming
1.1 uW of power. The AFUA precludes the need for an
analog-to-digital converter, and it also prevents a downstream
microcontroller from unnecessarily processing irrelevant data.
If a signal processing system were built around the AFUA for
detecting eating episodes (that is, meals and snacks), then the

ires IEEE permission. See htt s://www.ieee.or?llé)g
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whole system would consume less than 20 W of power. This
opens up the possibility of unobtrusive, batteryless wearable
devices that can be used for long-term monitoring of dietary
habits.
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