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A Contour Propagation Approach to Surface Filling-In
and Volume Formation

Peter Ulric Tse
Max Planck Institute for Biological Cybernetics

A new approach to surface and volume formation is introduced in response to the question, “Why do
some silhouettes look 3 dimensional (3D) and others look 2D?” The central idea is that form information
can propagate away from a “propagable segment” (PS) of occluding contour that could have projected
onto the image from the visible portion of a cross-section of a surface. A key property of a PS is that it
exhibits abrupt curvature changes where it meets the rest of the occluding contour. An algorithm is
described for filling in curved surfaces from a PS: When copies of a PS are propagated into the interior,
they act as cross-sectional surface contours that also exhibit abrupt curvature changes with the rest of the
occluding contour. The result is a nonmetric coding of 3D-shape in terms of local ordinal surface
curvature and orientation relationships that is scale, translation, and rotation invariant.

Recovering three-dimensional (3D) form from the inherently
ambiguous 2D retinal image is perhaps the most fundamental
problem faced by the visual system. To solve this problem, mul-
tiple shape-from-x systems have evolved to recover 3D shape from
the various cues to form found in the image. Thus, under normal
viewing conditions, the problem of recovering 3D shape from the
2D image can be solved using multiple mutually constraining cues.
In some cases, however, just a single cue can be used to generate
a distinct percept of 3D form. Silhouettes are an example of a
single-cue stimulus because the only information available to
generate 3D form from a silhouette lies in the shape of its contour.
For this reason, silhouettes are perhaps better than any other class
of stimuli for isolating and modeling properties of the shape-from-
contour system (e.g., Kimia, Tannenbaum, & Zucker, 1995; Rich-
ards & Hoffman, 1985; Zhu & Yuille, 1996). If we can understand
how the visual system generates curved surfaces from the contours
of silhouettes, we may be in a better position to understand how
shape is coded for stimuli in which multiple cues are present.

Interestingly, some silhouettes, like those in Figure 1a, look 3D,
whereas others, like those in Figure 1b, look flat. Silhouettes that
look 3D can look like volumes (i.e., closed surfaces plus the space
that they enclose; Albert & Tse, 2000; Tse, 1998, 1999a, 1999b,
1999c; Tse & Albert, 1998) or open curved surfaces that do not
enclose space. How does the visual system generate a representa-
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tion of a curved surface for the interior of a silhouette in which
there is no explicit form information available? Although there are
no local cues to surface orientation in the interior of a silhouette,
most observers perceive Point A on the large “bump” in Figure 1a
to have less surface slant than Point B. (Note: terms in italics are
defined in Appendix B.) What contour relations does the visual
system use to generate variations in perceived surface orientation
for regions far from the contour? The visual system must solve this
form recovery problem by knowing which aspects of the shape of
the 2D image contour are most informative about 3D shape in the
world and how local shape information constrains the construction
of surfaces.

To most observers, the ellipse in Figure 1b tends to look like a
flat disk on a ground plane, whereas the similar silhouette (con-
structed by joining two half-ellipses of different aspect ratio along
their common major axis) shown at the bottom of Figure la tends
to look like a bump lying on a ground plane (Kristjansson & Tse,
2001; Tse & Albert, 1998). Even though the aspect ratios of the
two ellipses from which the bump in Figure la was constructed
differ very little, it looks volumetric, whereas the ellipse in Figure
1b looks flat. It is remarkable that changing the occluding contour
in this subtle way leads to such a drastic shift in perceived form.
Any algorithm that generates 3D form from silhouettes must
account for this difference between a bump and an ellipse.

My goal is to understand those aspects of contours that are most
informative about shape and to describe an algorithm that the
shape-from-contour system may be using to recover 3D shape. I
raise the possibility that the visual system may seek out “propa-
gable” segments of occluding contour that could project from
segments of rim lying on a planar cut (Figure 2a) or cross-section
of a volume. Once an inference of such a cross-section has been
made, this cross-sectional information can be generalized over
ambiguous portions of the image to generate the percept of a
volume. Although several authors have discussed surface filling-in
from the boundary (e.g., Grossberg & Mingolla, 1985; Paradiso &
Nakayama, 1991), this has generally been described, at least im-
plicitly, as occurring over flat surfaces. The algorithm described
here amounts to a mechanism for filling in curved surfaces from
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Figure 1.  Why do the silhouettes in Figure 1a look 3D and those in 1b

look 2D? Note that the surface orientation of the point marked A appears
less slanted than that at B.

the boundary. Geometric properties of propagable segments of
occluding contour are described. I show that locations that undergo
abrupt curvature changes along a contour are particularly reveal-
ing about shape. Potentially propagable segments of contour lie
between two points of abrupt curvature change along a silhouette’s
contour. Once identified, they can be propagated by multiple affine
transformations of the propagable contour segment into the interior
of a silhouette. Both a propagable segment and its copies can be
interpreted as the visible portions of cross-sections through a
volume and can, therefore, be used to recover a volume from a
silhouette. Before presenting details of this algorithm, it is useful
to offer some theoretical background on the fundamental problem
to be solved.

Background to the Contour Propagation Algorithm

I constructed the silhouette shown in Figure 3a to have at least
two 3D form interpretations. These are depicted in Figure 3b and
¢ with curves corresponding to a stack of parallel, equidistant
planar cuts. Why are the two volumetric interpretations in Figure 3
(b and c) perceived, whereas the infinity of other possible 2D or
3D shapes that could have projected to the same image in Figure
3a are not? The answer that is proposed here is that there are two
different segments of occluding contour (shown in Figure 3a) that
can be propagated into the interior, and these lead to mutually
exclusive 3D form interpretations. They are mutually exclusive in
the sense that the 3D form depicted in Figure 3b cannot be
superimposed, in a 3D sense, on top of the form depicted in Figure
3c. The problem of how a propagable segment deforms as it
propagates over a surface is addressed later. My initial goal is to
define an algorithm that can specify which segments of occluding
contour are propagable and which are not.

The geometric relationship between surface contours and the
surfaces from which they project must be constrained if the visual
system is to recover 3D surface layout from the 2D image. In other
words, the visual system must make assumptions about the rela-
tionship between the curvature of contours in the image and the
curvature of surface curves in the world if it is to recover 3D form.
Otherwise, the problem of shape recovery from contours would be

underconstrained and the image open to too many incorrect form
interpretations.

Stevens (1981, 1986) and Knill (1992) argued that the visual
system is biased to attribute most, if not all, of the curvature of a
surface contour to the underlying surface curvature (see also Todd
& Reichel, 1990). This means that the visual system assumes that
the contour in the image projects from a curve on the surface that
has no more curvature than is afforded it by the underlying surface.
This point follows from the assumption of nonaccidentality (Bar-
row & Tenenbaum, 1981; Binford, 1981; Freeman, 1994; Na-
kayama & Shimojo, 1992). The visual system makes the implicit
assumption that the image is not due to one of the accidental object
arrangements or one of the few accidental viewpoints from which
an object’s surface layout is not derivable from its projected
contours and other image cues. In other words, it assumes that the
information available in the image is sufficient to recover 3D
surface layout. A corollary of {the assumption of nonaccidentality

(a) the object in the world

(b) the image projection

surface contour

occluding contour ——— g8

Figure 2. In Figure 2a an object is sliced by a plane. In 2b the surface
contour that projects from the planar cut in 2a is shown. The occluding
contour in 2b projects from the rim in 2a.
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When Figure 3a is seen as a 3D shape, two different shapes are
commonly seen. These are shown in 3b and 3c. The different shapes arise
because they are generated from the two different propagable segments
indicated in 3a.

Figure 3.

is that the visual system does not infer undulations of the 3D
surface in the absence of evidence for such (Richards, Koenderink,
& Hoffman, 1987; Tse, 1998). Conversely, the visual system
assumes that the curvature of surface contours in the image is due
to the curvature of the underlying projecting surface rather than to
the curvature of the curve itself that lies on that curved surface. Of
course, there are surface curves that have more curvature than is
afforded them by the underlying surface, such as spirals or those
that intersect themselves (e.g., see Figure 4a). However, in the
absence of image evidence that surface contours have more cur-
vature than is consistent with other cues to surface curvature, it is
assumed that no excess curvature is present.

For certain segments of surface contour (described next), the
assumption of no excess curvature is equivalent to an assumption
that the surface curves that project to those surface contours arise
from an intersection of a plane with the curved surface (Tse, 1998).
This “planar cut” assumption is weaker than the assumption that a
surface contour projects from a line of principal curvature, as
suggested by Stevens (1981), and is also weaker than the assump-
tion that a surface contour projects from a geodesic, as suggested
by Knill (1992; Knill, Kersten, & Mamassian, 1996). This is
because a surface curve corresponding to a locus of intersection
between any plane and a curved surface will have a curvature
entirely resulting from the surface curvature of the curved surface,
because a plane is not curved at all. In most cases, such curves will
conform to neither lines of principal curvature nor geodesic curves.
If we consider a single point on a surface, there will be only two
lines centered on that point that are lines of principal curvature. It
is unnecessarily stringent to require surface contours to project
from such lines or sums of lines because a surface curve can pass
through a surface point in a nonprincipal direction and yet still
have no more curvature than is afforded it by the underlying
surface. Similarly, if we consider two points on a surface, there
will generally exist only one geodesic path (of shortest distance
along the surface) connecting them. Again, it is unnecessarily
stringent to require surface contours to project from geodesics
because there are other paths that connect those two points, and
these paths have no more curvature than is afforded them by the
underlying surface. In particular, the set of paths defined by planar
cuts that pass through those two points will have no excess
curvature. However, planar cuts that slice through a surface at an
oblique angle will tend to project to surface contours with rela-
tively higher curvature than those that slice through the surface at
a transverse or right angle. Because oblique cuts may introduce
more uncertainty into the interpretation of the curvature of a
surface contour, there might be a preference for short over long
paths defined by planar cuts, in which case the planar cut assump-
tion would approximate a fuzzy version of a geodesic assumption.
This would be equivalent to a prior on interpreting surface con-
tours as having arisen from planar cuts that pass normally through
a surface rather than obliquely.

(a) (b) (c)

Figure 4. Because the surface contours in Figure 4a have abrupt curva-
ture changes or intersect themselves, they are not assumed to project from
a planar cut of the surface. The surface contours in 4b can project from
planar cuts of a cylindrical surface. Those in 4c¢ lack abrupt changes in
curvature but are inconsistent with occluding contour cues to 3D shape and,
therefore, cannot lie on a cylinder’s surface.
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The visual system may similarly assume that certain segments
of occluding contour project from rim segments that lie on a planar
cut of the volume that projected the image. Because a given
segment of rim on an object would count as a surface contour if
viewed from a different viewpoint, this is not very different from
what has just been claimed. The important question is what kinds
of segments of occluding contour or surface contour are assumed
to project from a planar cut. Later it is shown that a segment of
occluding contour that lacks abrupt changes in curvature will be
taken by the visual system to project from a segment of rim that
lies in a plane. In Figure 5a, for example, the segments labeled A,
B, C, and D can each be assumed to lie in a plane because of their
lack of curvature discontinuities. Indeed, these segments were
created by segmenting the boundary at points of curvature discon-
tinuity. In Figure 5b, possible planes have been depicted to make
explicit this key idea. The planes are depicted as they might look
under perspective projection to enhance the 3D effect, although I
do not address the issue of perspective deformations until later.

In contrast to occluding contours, a segment of surface contour
that lacks abrupt changes in curvature may or may not be taken by
the visual system to project from a mark or boundary on the
surface that lies on a planar cut of that surface, depending on its
consistency with other cues to 3D form. Thus, the surface contours
shown in Figure 4a will be excluded from potentially lying on
planar cuts because they possess abrupt changes in curvature or
because they intersect themselves. However, the surface contours
shown in Figure 4b may be interpreted as planar cuts because they
not only have no abrupt changes in curvature, but they are also
consistent with other cues to 3D form found in the occluding
contour. The surface contours shown in Figure 4c, however, will
not be perceived as lying on a planar cut because, although they
lack curvature discontinuities, they are not consistent with occlud-
ing contour cues to the overall 3D form of the object.' These
surface contours might, therefore, be interpreted as curves drawn
on the surface with excess curvature, as in Figure 4a, or separate
objects attached to the surface of the object.

(a) (b)

Figure 5. (a) The occluding contour segments A, B, C, and D each lack
abrupt curvature changes and, therefore, each project from a rim segment
that lies on a common plane. (b) Possible planes.

(a) (b) (©)

Figure 6. The propagable segments A’ in Figure 6a can generate two
different solutions for the silhouettes, as shown in Figure 6b and c.

Geometric Properties of Propagable Contour Segments
and the Contour Propagation Algorithm

Occluding contour segments that project from a portion of rim
lying on a planar cut have geometric properties that other segments
of occluding contour do not. Such segments carry information
about the shape of a volume’s cross-section that can be used to
infer the shape of visible surfaces even in regions that lack local
cues to surface curvature. Propagable segments of occluding con-
tour can be used to generate a set of surface contours that can tell
us about surface relationships for surface regions that project to the
interior of a silhouette. These surface contours are ones that would
be visible if planar cuts were made through the object’s surface by
planes parallel to the plane that contains the rim segment that
projects to the propagable segment of occluding contour in the
image. The basic idea is shown in Figure 6. In Figure 6a the
portion of occluding contour marked “A’” propagates along
the length of the silhouette. (The prime indicates that the symbol
refers to an entity in the image rather than an entity in the world.
Symbols without primes refer to entities in the world such as the
rim or a curve lying on a volume’s surface. Symbols with primes
refer to entities in the image, such as occluding or surface con-
tours.) The two possible propagations given the cross-sectional
information available are shown in Figure 6b and c. In the “bump”
cases, the cross-sections change only their size, not their shape. In
Figure 3b and c, the size and shape of the inferred cross-section
change over the course of propagation. In this section, I investigate

' Surface contours inconsistent with planar cuts may serve to flatten the
appearance of a sithouette if they are interpreted as lying on the surface.
Indeed, most observers tend to see Figure 4a as most 3D (i.e., cylindrical)
in appearance, and Figure 4c as least. On the other hand, surface contours
with abrupt curvature changes can be taken to lie on planar cuts through a
volume if occluding contour cues suggest the existence of a corner in the
interior of the silhouette.
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the geometric properties of propagable segments of occluding
contour. I address the problem of size and shape deformation of
propagated segments later.

I make several assumptions to simplify the initial geometric
analysis and later relax them. I investigate the properties of sil-
houettes that correspond to volumes that have no surface tangent
discontinuities, such as corners, and have no holes (i.e., genus
zero) and assume orthographic projection. I also assume that the
occluding contour of a silhouette corresponds to a single unbroken
loop of rim. (Of course, this rim loop need not lie on a plane. Later
I consider more natural volumes that have rims composed of
discontinuous curves and loops). Therefore, I do not consider
silhouettes projected from volumes whose visible surfaces sur-
round regions of self-occluded surface. Last, I assume a nonacci-
dental viewpoint.

The outline of a silhouette is a closed loop of contour in the
image. If this loop is cut at two different points R1" and R2’, two
image contour segments A’ and B’ will result, as shown in Fig-
ure 7. Although there are countless ways of cutting such an image
loop into two contour segments A’ and B’, only a small number of
contour segments A’ can be projections from a portion of rim lying
on a planar cut. Occluding contour segments that project from a
planar portion of rim have several geometric properties that other
occluding contour segments generically do not have. These are
described later. An intuitive explanation is given in the discussion
after each claim. Where indicated, a more detailed analysis can be
found in Appendix A.

Property 1: The projection of a planar cut corresponding to the visible
portion of a cross-section through a volume will generically lack
tangent discontinuities with the occluding contour projected from the
rim of a volume with everywhere differentiable surfaces. (For proof,
see Item 1 in Appendix A.)

The geometric relationships discussed here can be better visualized
by comparing the planar cut of a volume in the world with its
image projection. Figure 2A depicts a volume in the world sliced
by a plane, and Figure 2B depicts the image projection of this
situation. Although there is a surface tangent discontinuity where
the plane meets the surface of the volume in the world, the
corresponding surface contour in the image merges with the
bounding contour of the silhouette without linear tangent discon-
tinuities at the two points indicated by asterisks in Figure 2B.

R1'

Figure 7. The silhouette on the left can be segmented into two halves: A’
and B” at R1’" and R2’, respectively.

Property 2: The image projection of a planar cut will generically
exhibit abrupt curvature changes with the occluding contour projected
from the rim. (For proof, see Item 2 in Appendix A.)

A useful way to think about points of abrupt curvature change is as
follows. The radius of the circle that has the same curvature as the
curvature at some point P on an image curve is given by the
inverse of that curvature (Courant & John, 1989). There will be an
abrupt curvature change at P when these “circles of curvature”
change their radii discontinuously as they pass through P. For
example, consider an ellipse. The circles of curvature will change
smoothly into one another as we move around the ellipse. In
contrast, the bump silhouette will have abrupt radii changes at its
two “corners.” Curves that contain inflection points will normally
have such breaks because the circle of curvature will jump from
one side of the curve to the other as it passes through the inflection
point. However, because the visual system is more sensitive to the
presence of local maxima of positive or negative contour curvature
than it is to inflection points (Attneave, 1954), we can disregard
such changes in sign and focus on abrupt changes in the absolute
value of the radius of curvature. An abrupt curvature change can be
defined as a point at which the second derivative along the contour
is not well defined. This is a second-order discontinuity.

Property 3: A segment of occluding contour that lacks curvature
discontinuities projects from a segment of rim lying on a plane. (For
proof, see Item 3 in Appendix A.)

Consider the case of a linear occluding contour segment. Assum-
ing a generic view, a line projects from a linear segment of rim,
which must lie in a plane. Similarly, consider a segment of oc-
cluding contour that corresponds to a segment of an ellipse. As-
suming a nonaccidental view, this will project from an elliptic (and
therefore planar) segment of rim because only an ellipse will
generically project to an ellipse under orthographic projection. The
orientation of the plane on which the rim segment lies is, however,
ambiguous. Note that a segment of occluding contour that contains
curvature discontinuities between its two endpoints can project
from a segment of rim that lies on a plane, but this will not
generically be true.

A corollary of Property 3 is the following: Large curvature
discontinuities in the occluding contour are more informative
about non-coplanarity of adjacent rim segments than are small
curvature discontinuities. If two adjacent rim segments lie on
different planes, but these planes are very close to being coplanar,
then the abruptness of the corresponding curvature change in the
image will be small, even if mathematically abrupt. In general, the
abruptness of a given occluding contour curvature change will
increase as the angle increases between the planes on which
corresponding rim segments lie and will decrease as the angle
decreases (for proof, see Item 4 in Appendix A). Because the
visual system has limited resolution, it may not be able to detect
very small curvature discontinuities. The visual system is most
likely sensitive to large curvature discontinuities because these are
likely to correspond to pairs of rim segments that lie on planes that
deviate greatly from coplanarity. When planar cuts are almost
coplanar, they describe almost the same cross-section. However,
when planar cuts approach orthogonality, they provide two differ-
ent cross-sections, and two cross-sections are more informative
than one. Large curvature discontinuities, therefore, provide more
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information about potential cross-sections than small ones. The
visual system is thus likely to focus on large curvature disconti-
nuities or their associated maxima of positive curvature rather than
slight curvature discontinuities.

In searching for planar cuts of the rim specified by the occluding
contour, the visual system may search for local maxima of positive
curvature because abrupt curvature changes arising from a planar
cut will tend to lie on a local maximum of positive contour
curvature in the image or in the immediate neighborhood of such
a maximum. For example, for a cylinder (Figure 8, left panel) the
curvature discontinuities R1’ and R2" generated by a planar cut lie
right on local maxima of positive contour curvature. For the
silhouette of a cone, however (Figure 8, right panel), curvature
discontinuity points are somewhat displaced from the local max-
ima of positive contour curvature. Rather than search for every
point of abrupt curvature change along a silhouette’s occluding
contour, the visual system may just search for local maxima of
positive curvature along the bounding contour of a silhouette and
then consider only points of curvature discontinuity in their neigh-
borhood. If the resolution of the visual system is low, it may just
use segments of occluding contour between such maxima because
mathematical discontinuities are typically eliminated as the image
is blurred, but curvature maxima will generally be robust to blur-
ring. This is consistent both with Attneave’s (1954) insight that
local maxima of positive curvature along a contour are particularly
revealing about shape and with recent neurophysiological work
demonstrating preferential macaque V4 cell tuning to maxima of
curvature at specific locations along the closed contour of a sil-
houette (Pasupathy & Connor, 2001; see also Pasupathy & Con-
nor, 1999). Of course, it is an empirical question how abrupt a
curvature discontinuity or how sharp a local maximum of positive
curvature must be in order for-the visual system to take it as
potentially informative about the possibility of a planar cut. It is
also an empirical question at what resolution or resolutions the
visual system searches for such informative points. The bounding
contour of a silhouette of a volume will only have a finite number
of such local maxima of positive curvature at a given resolution.
The number of segments of occluding contour between pairs of
these maxima will, therefore, also be finite. One or more of these
segments can then be considered for propagability.

I now describe a contour propagation algorithm that exploits this
contour information. Once a segment of the occluding contour
with the above properties has been specified, it can be propagated
into the interior of a silhouette. The basic idea is simple. Step the
specified segment A’ into the interior of the silhouette and expand
or contract it until it just touches the sides of the silhouette. Call
these new surface contours “prop(A’).” A detailed description of
the algorithm is given in Item 5 of Appendix A. Other constraints
on contour propagation are described later, but this is the main
idea. Note that the algorithm describes the propagation of occlud-
ing contour information across the image, not the propagation of
planar cuts across the volume itself. However, the prop(A’) con-
tours are interesting only because they help us recover the shape of
a volume or curved surface by telling us about cross-sections
where there are no local cues to cross-sectional shape. Of course,
propagation in this manner will not give a unique shape solution to
a silhouette in a metric sense because the precise depth, slant, and
tilt of planar cuts will remain uncertain (for a discussion of this
point, see Items 6 and 7 in Appendix A). However, the need to be

o = second-order discontinuity

—— = max. of positive curvature

Figure 8. Local maxima (max.) of positive contour curvature and points
of second-order discontinuity overlap for the base of a cylinder but not for
the base of a cone.

consistent with propagable or partially propagable segments of
occluding contour imposes strong constraints on possible shapes
consistent with an image.

Propagating A’ amounts to generating surface contours in the
interior of the silhouette that correspond to the image projection of
a series of planar cuts of the volume that are parallel to the plane
on which the rim segment A lies. If A’ is propagable into the
interior of the silhouette, then the surface orientation relationships
pertaining at A will also apply in the surface neighborhood of A
that projects to the interior of the silhouette. A more general
contour propagation algorithm will have to take into account how
the propagating surface contour deforms under perspective projec-
tion and in interaction with the rest of the occluding contour B'.
These issues are discussed later. First, however, let us consider
some other properties of A’ that determine whether it is a propa-
gable segment of occluding contour or not.

Property 4: If prop(A") extends outside of A’ or B’, then A’ is not
propagable.

If prop(A’) extends beyond A’ or B, then there will be sections of
prop(A’) that do not lie within the silhouette. This is impossible
because surface contours cannot lie outside of occluding contours,
just as a cross-section of a volume cannot lie outside that volume.
An example of what is disallowed is shown in Figure 9a and b.

Property 5: A propagable segment of contour A’ will have an overall
radius of curvature that is larger than that for the nonpropagating
segment B'.

2 It might behoove the visual system to segment occluding contours into
linear and quadratic segments because these will always lack curvature
discontinuities, and will always project from linear and quadratic segments
of rim on a volume, assuming orthographic projection. Sensitivity to linear
and quadratic curvature could underlie sensitivity to abrupt changes of
curvature at multiple scales. Because the “bump” silhouette is composed of
two half ellipses of different aspect ratio merged along their common major
axis, and arcs of an ellipse in the image generically project from rim
segments that lie on a common plane, we can assign the upper half of that
silhouette to one plane and the lower half to another, without specifying the
precise slants of those planes.
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If we fit® one arc of an ellipse to A’ and another to B’, the A’ arc
will appear less curved in the image than the B’ arc. Intuitively,
this must be the case because, when A’ is taken to be the projection
of the near edge of a volume’s cross-section, the volume itself is
presumed to occlude the far side of that cross-section. The image
projection of the rest of the volume B’ must, therefore, bulge away
from A’. In Figure 10a, B’ must arch above the dotted far side of
A’ to obscure it. When the segment is taken to be the projection of
the far edge of the cross-section as in Figure 10b, B" must still
bulge so that A" can propagate. If B’ did not have a smaller overall
radius of curvature than A’, it would not bulge out enough for A’
to propagate. That is, there would be no volume over which the
cross-section corresponding to A’ could propagate.

A further constraint on propagated contour segments is the
following: An A’ in the image that is fit with an ellipse whose
aspect ratio approaches 1 projects from a segment of rim that lies
approximately in the frontoparallel plane. This follows from the
simple observation that an arbitrary ellipse will only project to a
circle in the image given an accidental viewpoint. In general, an
ellipse that is not a circle will project to an ellipse that is not a
circle. Thus, assuming a generic view, if A’ is best fit by a circle,
it projects from a segment of rim that would also be best fit with
a circle that lies in the frontoparallel plane.* An example of this is
shown in Figure 11a. The silhouette is typically interpreted in two
ways (Figure 11b and c). In both cases, the two A’ project from
rim segments A that appear to lie approximately in the frontopa-

(a) Prop(A") cannot cross A". (b) Prop(A”) cannot cross B'. The
portion of the occluding contour that is not A" is B'. prop = propagation
function.

Figure 9.

)

A
(a) (b)

Figure 10. B’ must bulge above the ellipse fit to A’ in either the
viewed-from-above case (a) or the viewed-from-below case (b) so that A’
has a region over which it can propagate.

rallel plane (Figure 11d and e). Projections of planar cuts would
correspond to a stack of surface contours that imply an approxi-
mately cylindrical surface. Moreover, because successive inferred
planar cuts correspond to cross-sections that must occlude one
another, under one interpretation the cylinder seems to point into
the page and under the other interpretation it appears to jut out of
the page.

The five properties described previously set propagable seg-
ments of occluding contour apart from nonpropagable segments.
When prop(A') satisfies these conditions, then A’ is a propagable
segment of occluding contour. An example of the algorithm for
locating propagable contour segments in the image is shown in
Figure 12. In Figure 12a, prop(A’) is first-order continuous and
second-order discontinuous with B’ and can, therefore, count as
the image projection of a volume’s planar cut. In Figure 12b, A" is
not propagable because prop(A’) is first-order discontinuous with
B’. In Figure 12c, prop(A’) is first-order continuous and second-
order discontinuous with B’, but A" has a smaller overall radius of
curvature than B and is, therefore, not propagable. Of course, it is
possible that an entirely flat object will project to an image that has
propagable segments of occluding contour. Indeed, all the silhou-
ettes considered here are such objects. The fact that we tend to see
these silhouettes as 3D demonstrates just how powerful propagable
segments are as 2D cues to 3D form. In the absence of some other
image cue indicating that a propagable segment is not a valid cue
to a volume’s cross-section, the visual system appears to assume
that it is.

* An ellipse can be filled using some procedure in the image such as
minimization of least squares, taking into account that usually only about
half of a planar cut is visible because of self-occlusion.

* There are other examples of image contour configurations that can be
assumed to lie in a frontoparallel plane assuming a nonaccidental view. A
right angle in the image will generically project from a right angle in the
frontoparallel plane because a right angle in the world will not project to a
right angle from any other plane under perspective projection (Richards,
Jepson, & Foldman, 1996). Similarly, horizontal (vertical) contours in the
image will generically project from horizontal (vertical) lines in the fron-
toparallel plane. If a non-frontoparallel line in the world projects to a
horizontal (vertical) line in the image, then a slight vertical (horizontal)
movement of the head will make the line nonhorizontal (nonvertical) under
perspective projection.
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Figure 11. 1f the silhouette in Figure 11a is given a 3D interpretation, it
tends to be given either the interpretation in 11b or the interpretation in 11c.
The front and back circles are assumed to project from segments of rim in
the frontoparallel plane as shown in 11d and 1le.

Multiple Propagable Contour Segments

In some cases, such as shown in Figure 3A, alternative propa-
gable segments will overlap. In general, the volume interpretation
generated by propagating one of these propagable segments will be
different than that generated by propagating the other segment.
Because a given volume in the world can only have one 3D form,
the visual system generates a volume interpretation consistent with
only one of these segments. Because different segments of par-
tially overlapping occluding contour that are propagable will gen-
erally imply different surface layouts, a given point on the contour
can belong to only one propagable segment at a time.

The global form inferred from a silhouette must always be
consistent with all local propagations. For the “coral” depicted in
Figure 13a, this is not a problem because the local propagations
imply mutually consistent cross-sections and, therefore, one or
more globally consistent volume solutions. When two inferred
cross-sections differ in shape, intermediate cross-sections can be
interpolated using a morphing algorithm. Problems interpreting a
silhouette arise when local propagations are not consistent with
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Figure 12.  The A*' (i.e., copy of the propagable contour segment A’) in
Figure 12a is legal, but those in 12b and 12¢ are illegal for reasons
explained in the text.

one another, when they imply mutually inconsistent cross-sections,
or when one segment implies a volume and the other a flat or
curved nonvolumetric surface. For example, in Figure 13b, the
silhouette is consistent with a cylindrical cross-section along its
base but is not consistent with this same cross-section at the top,
where there is just a straight line. Because the visual system
assumes a nonaccidental view, this line projects from a linear
segment of rim. Surfaces in the neighborhood of such a segment of
rim must have zero curvature and, therefore, either be flat or
cylindrical. If the surface curvature is cylindrical, then the visible
portions of horizontal planar cuts will be lines and vertical planar
cuts will be curved. However, this is orthogonal to the cylindrical
curvature implied by the base, where horizontal planar cuts would
appear curved and vertical planar cuts would be lines. Because
interpreting the upper portion of the silhouette as projecting from
a surface with cylindrical curvature leads to an inconsistency, the
inferred surface collapses into a flat one in the neighborhood of the
top-most linear segment of rim. The overall shape may then be
curved on the bottom and wedgelike at the top, like the head of an
axe. This collapse would also explain why the silhouettes in Figure
1b look flat, whereas those in Figure la look volumetric. Another
example is shown in Figure 13c. In this case, the triangular top of
the silhouette is consistent both with a triangular flat projecting
surface and a conical projecting surface. Because the bottom of the
silhouette implies a cylindrical cross-section and the top is not
inconsistent with that cross-section, propagation of that cross-
section all the way to the top is possible. The most likely perceived
shape will, therefore, be a cylinder with a cone on top. The
silhouette in Figure 13d is locally consistent with a cylindrical
surface solution in the neighborhood of any of its four ends.
However, the surface at the center of this cross cannot be both
cylindrical along one axis and cylindrical along the perpendicular
axis. Therefore, the surface curvature in the center is ambiguous
and collapses into a flat surface to resolve the inconsistency. In
Figure 13e, the base is consistent with a volumetric solution but the
top is not. This is not a problem because the cross-section can be
a curved line for all transversal planar cuts, and the perceived form
will be a curved rectangular sheet rather than a volume. Note that
this silhouette is still subject to at least two interpretations: one
where the middle hump appears closer and the other where it
appears farther away than other parts of the surface. In Figure 13f,

(a) (b)

() (d) (e) (®

Figure 13. (a) This silhouette has three propagable segments. A global
solution must be consistent with all local propagations. In Figure 13b the
cross-section at the bottom is consistent with an ellipse, whereas at the top
it must be a line. The perceived shape may, therefore, be an axehead. In
Figure 13c the top triangle is ambiguous but consistent with the cross-
section dictated by the shape of the base. The center of Figure 13d may
appear flat because the four propagable segments imply mutually incon-
sistent surface curvatures. The silhouette in Figure 13e is only consistent
with a curved sheet and (f) is ambiguous.
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however, the interpretation is unclear because the base is consis-
tent with a volumetric solution, but the top is probably not. Thus,
to have a distinct open or closed curved surface solution, all
propagations must imply consistent and globally morphable local
cross-sections.

The Problem of Prop(A’) Deformation

By propagating cross-sectional information, the algorithm
makes the implicit assumption that the cross-section in ambiguous
distal portions of a volume bears some relationship to the cross-
sectional information carried by the contour segment A’. The
volume can be given by the integration of all similarly shaped
cross-sections over the height or length of the volume, as depicted
in Figure 7. In the case shown in Figure 7b, the shape of the
inferred cross-section remains constant, although it changes its size
over the course of propagation away from A’ and different
amounts of that planar cut become visible as it propagates away
from A’. In the cases shown in Figure 3b and c, however, the shape
of the image projection of the planar cut changes as it propagates
away from A’.

How does the visual system determine how the shape of
prop(A”) will change with distance from A’? Clearly, the relation-
ship between the shape of A’ and that of the rest of the occluding
contour is essential. In image terms, the prop(A’) can be assumed
to change shape in a way that is consistent with B’. One problem
is that there may be multiple consistent solutions. There is, how-
ever, information in the shapes of A’ and B’ about surface curva-
ture and, by implication, cross-sectional shape that can constrain
solutions.

One important constraint was discovered by Koenderink and
van Doorn (1976; Koenderink, 1984), who showed that the sign of
occluding contour curvature at a given point corresponds to the
sign of the surface curvature at the corresponding point on the rim.
This insight forms the basis of the “codon” theory of shape
recovery from silhouettes (Richards & Hoffman, 1985; Richards et
al., 1987). Although this constrains possible solutions, there are
still infinitely many possible volumes that could project to any
given silhouette. Because the two possible interpretations of Figure
3a that are shown in Figure 3b and c have the same occluding
contours, the sign of surface curvature must be the same at each
corresponding point of rim on the two volumes. As Figure 3B and
C demonstrates, however, volumes with different forms can satisfy
the necessary sign equivalence between surface curvature at the
rim and occluding contour curvature.

In general, a smooth closed loop, such as the outline of the
silhouettes considered here, must have an even number of inflec-
tion points where the sign of curvature changes from positive to
negative (Beusmans, Hoffman, & Bennett, 1987). In order to close,
any change in curvature sign will have to be offset by a sign
change in the opposite sense.” An inflection point on the contour
projects from the point on the rim where a curve lying on the
surface composed of points of zero surface curvature intersects the
rim. A small number of possible classes of volume solutions can be
generated by linking pairs of inflection points with curves of zero
curvature (Beusmans et al., 1987). These curves of zero curvature
cannot cross (Koenderink & van Doorn, 1980, 1981) for volumes
with surfaces that are differentiable everywhere. As Figure 14
shows, the curves of zero surface curvature separating the regions

4

(b)

Figure 14. Regions of negative surface curvature may remain separate (a)
or they may link up in (b). Figure 14a corresponds to the solution shown
in Figure 3b and 14b corresponds to the volume solution shown in 3c.

of positive and negative surface curvature are different for the two
form solutions shown in Figure 3. These solutions ignore the shape
of the back surface of the volume because it is not known to what
degree the surface curvatures of the backs of volumes are repre-
sented by the visual system (Tse, 1999a; van Lier, 1999). Given a
propagable occluding contour segment A’, the visual system may
be able to estimate the shape of prop(A’) on the basis of surface
curvature information implicit in the shape of B’. A more detailed
consideration of the information carried by the shape of B’ and
how B’ may induce changes in the shape of prop(A’) can be found
in Items 8 and 9 of Appendix A.

In summary, once a propagable segment of occluding contour
has been identified, it will typically change shape as it propagates
because the shape of corresponding cross-sections will generally
vary over a volume. One way a propagable segment’s shape can
deform is through interpolation or morphing with other known
cross-sections. Other cross-sections can be inferred from the shape
of B'. In particular, the relationship discovered by Koenderink and
van Doorn (1976; Koenderink, 1984) between contour and
surface curvature sign imposes important constraints on possible
cross-sections.

S Intuitively, this can be understood as follows. Imagine an ant walking
along the contour with the inside of the silhouette to its left. To end up at
its starting position, any time the ant turns to the right, it will have to turn
to the left to undo this movement away from closure.
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Generalizing the Algorithm

The algorithm for contour propagation as it has been described
so far is limited by the initial simplifying assumptions and is not
ideally suited to deal with silhouettes generated by blackening
images of real objects. This section discusses ways of extending
the prop(A’) algorithm so it can apply to silhouettes generated
under situations of perspective projection, self-occlusion, surface
nonsmoothness, and curved medial axes.

Generalizing to Cornered Objects

Up to this point, silhouettes have been assumed to be the image
projections of volumes with surfaces that are differentiable every-
where. However, silhouettes can also project from volumes that
have corners. It is easy to extend the algorithm to deal with cases,
such as the silhouette of a cube, where the surface has corners by
allowing the endpoints of the prop(A’) to have first-order discon-
tinuities with the nonpropagating part of the bounding contour B’
for A’ that are first-order discontinuous with B’. Such endpoints
would obviously still be points of curvature discontinuity between
B’ and any given prop(A").

Generalizing to Contour Tangent Discontinuities That
Imply Self-Occlusion

So far I have only considered silhouettes that look volumetric
and whose occluding contour projects from an unbroken loop of
rim. However, many silhouettes look like volumes with inferred
rims that are not unbroken loops, such as the “hat” shown in
Figure 15. The existence of contour tangent discontinuities in such
silhouettes may be taken as potential T-junctions that could serve
as cues to surface self-occlusion and thus 3D form relationships.
Many authors have suggested that surface completion behind an
occluder occurs because of good continuation (Wertheimer, 1923)
among image contours that terminate at an image tangent discon-
tinuity such as a T-junction (e.g., Kellman & Shipley, 1991;
Takeichi, Nakazawa, Murakami, & Shimojo, 1995; Tse, 1999a;
Wouterlood & Boselie, 1992). The initiating conditions for poten-
tial contour and surface interpolation are local tangent disconti-
nuities.® Initiated contour interpolations can link up at a distance
with other interpolated contours if they meet the condition of
good contour continuation. Because the contours terminating at
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Figure 15. Silhouettes that look 3D can project from objects whose rim
is discontinuous. (b and ¢) Two possible interpretations of Figure 15a.

L-junctions in the “hat” silhouette are continuous, two surfaces at
different depths, one occluding the other, may be interpolated. The
hat in Figure 15a has two interpretations that are consistent with
such an interpolation. These are shown in Figure 15b and c.
Cross-sectional information also appears to play a role in these
types of silhouettes because the cross-section of the lower part of
the inferred volume appears to have a cross-section whose aspect
ratio is the same as that of the upper elliptical portion of the
silhouette.

Generalizing to Perspective Projection

The visual system may assume that the overall aspect ratio of a
cross-section will be preserved in distal portions of a volume in the
absence of image cues that it is not preserved. That is, if a
propagable segment of image contour is fit with an ellipse, then the
visual system may assume that the ellipses fit to distal planar cut
projections have the same aspect ratio, have parallel axes, and
project from planar cuts that lie on parallel planes through the
volume. Consider the silhouette projected from a cylinder. The
interpolated ellipses generated from the propagable segment of
occluding contour at the base all have the same aspect ratio and
orientation. There are two propagations consistent with this ellipse
and two concomitant possible percepts (Figure 2). This type of
propagation would be consistent with an assumption of ortho-
graphic projection but is inconsistent with the perspective projec-
tion that, in fact, underlies image formation on the retina.

Propagation of planar cut information consistent with a given
perspective may require at least two propagable segments of the
silhouette’s occluding contour that do not overlap. For example,
the silhouette shown in Figure 16a could be the image projection
of a cylinder. Note that the two propagable contour segments Al’
and A2’ have different aspect ratios, as indicated by the pair of
ellipses in Figure 16a. This is not consistent with the orthographic
projection of a cylinder. The set of propagated surface contours in
the image—the set of all prop(A’)—would have different aspect
ratios even though the stack of planes defining the planar cuts of
the volume may be parallel in the world and the set of cross-
sections across the volume would be identical in the world as well.
Depending on which lip of the inferred cross-section is presumed
to be in front, the two propagations shown in Figure 16b and ¢ are
possible. To interpolate how the set of prop(A’) will be deformed
by perspective, the aspect ratio of a given prop(A’) between Al
and A2’ could be given by a linear weighted average of the aspect
ratios of A1’ and A2'".

The visual system may make other assumptions to help interpret
the distortions introduced by a perspective projection. One may be
that an A’ projected onto the image from a planar cut through a
convex volume whose plane passes over the eyes will generally
bulge upward, whereas the opposite will be true for planar cut
planes that pass below the eyes (see Figure A7). The visual system
can perhaps gauge the level of its viewpoint with respect to an
object by considering the degree of upward and downward bulging
for two propagable contour segments A1’ and A2'.

S The process of contour and surface interpolation is not a simple
bottom-up process; because the “mergeability” of volumes determines
which continuous contours can be linked (Tse 1999a).
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Figure 16. A1’ and A2’ have different aspect ratios. This difference is
taken as a perspective cue. (b and ¢) Two solutions consistent with the
silhouette in Figure 16a.

Note that perspective cues can be interpreted as information
about object size, object orientation in the world, or viewer posi-
tion with respect to the object. The visual system must overcome
this ambiguity using world knowledge and image cues beyond the
shape of the occluding contour because the occluding contour is
inherently ambiguous. The gauging of viewing position from per-
spective cues implicit in the occluding contour may interact with
certain priors that the visual system may have on assumed viewing
position. For example, there may be a preference for right angles
at inferred corners (Richards et al., 1996), placement on ground
planes (Albert & Tse, 2000; Tse, 2000), or canonical shapes such
as cuboids, cones, and cylinders given ambiguous image data.
Such preferences would presumably reflect the statistics of the
world (e.g., Knill & Richards, 1996) learned through experience or
internalized over the course of evolution.

Generalizing to Curved Medial Axes

There has been an implicit assumption so far that cross-sectional
information is propagated in such a way that successive cross-
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sections are due to parallel planes. This need not be the case
because cross-sections need not be parallel in the world in order to
convey information about 3D form. For example, in the “candy
cane” shown in Figure 17a, the cross-sections are not parallel, as
shown in the two solutions drawn in Figure 17b and ¢. The manner
in which successive prop(A’) surface contours are generated could
take the curvature of a silhouette’s medial axis into account. For
the case of the candy cane, the medial axis generated by the most
common algorithm for generating medial axes in the image is
shown in Figure 17d. This algorithm links the centers of all circles
that have grown within the interior of the silhouette until they
make contact with as much of the bounding contour of the silhou-
ette as possible (Blum, 1973; Kovacs, Feher, & Julesz, 1998;
Kovacs & Julesz, 1994; compare also Siddiqi, Kimia, Tannen-
baum, & Zucker, 2001). Given the medial axis shown in Figure
17d and a propagable segment A’ approximated by an ellipse
whose major axis makes an angle X with the tangent to the medial
axis, the prop(A’) can be propagated such that their major axes
continue to maintain the same angle X with the tangent to the
medial axis. This modification of the algorithm would allow for
solutions such as those shown in Figure 17b and c.

Although a planar cut approach to volume recovery from sil-
houettes is not inconsistent with a medial axis account, there are
instances in which a medial axis account gives a wrong shape
description. Because the center-of-circles algorithm described pre-
viously operates over the image and not over the volume that
projects to the image, it will tend to give a useful medial axis
description only for cases in which a long object in the world casts
a long silhouette in the image. In cases in which a bloblike object
casts a long image, as in the bump shown at the bottom of Figure
la, or a long object casts a bloblike image, the medial axis
approach will tend to give wrong answers. For example, the medial
axis shown in Figure 18a implies a long Brazil nut-shaped object.
Because observers tend to see a round bump rather than an elon-
gated 3D shape when seeing the silhouette alone, the medial axis
approach by itself is an inadequate basis for a visual shape code.
Except where long objects cast long silhouettes, there will not
generically be a relationship between the medial axis of the object
in a 3D sense and the medial axis in a 2D sense. The axis of
rotational symmetry of a bump in the world would cast the line
shown in Figure 18b instead, and this line is perpendicular to the
medial axis shown in Figure 18a. Note that this line is the path
traced out by the centers of the prop(A’).

There may be other ways that the occluding contour can interact
with a medial axis. Implicit in the algorithm is the idea that rim

(b)

(a)

Figure 17.
interact with the medial axis (d).

(d)

(a) The candy cane silhouette has at least two solutions (b and c). The propagated segment may
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Figure 18.
is a wrong solution because it does not correspond to any axis of the
perceived 3D shape. The axis of symmetry of a bump would project to the
line shown in Figure 18b.

(a) Most medial axis algorithms would result in this axis. This

segments rotated around the medial axis in a 3D sense sweep out
a volume. Given only one rim segment, such an operation would
typically lead to corresponding occluding contour segments that
are the mirror image of one another across the medial axis in a 2D
sense. An example of this is depicted in Figure 19b for the
silhouette shown in Figure 19a. Symmetrical silhouettes may look
3D in the absence of a propagable segment of occluding contour if
(a) they could be the image projection of a volume that could have
been generated through revolution in this way and (b) the volume
thus generated could not project to a silhouette with a propagable
contour. The existence of symmetry itself may, therefore, imply a
circular cross-section in the absence of a segment of occluding
contour that specifies a noncircular cross-section.’

Shape From Surface Contours

For static images, occluding contours probably offer the stron-
gest constraints on 3D form because other cues, such as shading or
texture, appear to be captured or dominated by contour cues (cf.
Christou, Koenderink, & van Doorn, 1996; Koenderink, van
Doorn, & Christou, 1996; Koenderink, van Doorn, Christou, &
Lappin, 1996). As line drawings and silhouettes demonstrate,
occluding contours can be a sufficient cue to 3D shape, although
they are not a necessary cue.® Indeed, the bounding contour carries
more information than shading cues when recognizing objects
across rotations in depth (Hayward, 1998; Hayward & Tarr, 1997,
Hayward, Tarr, & Corderoy, 1999). Inferring cross-sectional in-
formation from the shape of the occluding contour may raise 3D
form possibilities that are further constrained by other image cues,
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Figure 19. (aand b) Some silhouettes that lack propagable segments may
appear 3D because of symmetry.

Figure 20. Surface contours are sufficient to generate a 3D percept.

and other image cues may help determine which segments of
occluding contour provide cross-sectional information.

The shape-from-contour system can recover shape from surface
contours as well as it can recover shape from occluding contours.
There are examples, such as shown in Figure 20, in which there are
no occluding contours at all, and still we see an undulating surface.
Claims (e.g., Li & Zaidi, 2000) that 3D shape can only be recov-
ered when a texture has most of its energy along directions of
principal curvature are disproven by this type of example (Todd &
Oomes, 2001). In this case, the surface contours are assumed to
correspond to planar cuts of the underlying surface, and undula-
tions of the former are taken to correspond to undulations in the
latter. Note that points along a single surface contour that are lower
than other points along that surface contour correspond to points
on the curved surface that are lower in the world, assuming
orthographic projection. Which surface contour is seen to be
furthest in front is ambiguous. It could be either the top-most or
bottom-most contour in Figure 20.

In general, the manner in which surface contours intersect the
occluding contour yields important 3D shape information. Because
surface contours are presumed to correspond to a planar cut in the
absence of evidence to the contrary, surface contours that meet the
occluding contour without first-order discontinuities imply that the
rim lies on a differentiable portion of surface. However, surface
contours that intersect the occluding contour with first-order dis-
continuities, such as shown in Figure 21, imply that the rim lies on
a corner or that the surface has an edge at the corresponding points
in the world.”

Surface contours can be interpreted as corners and can serve as
constraints on how propagable segments of occluding contour
propagate. Thus, the surface contours in Figure 22a appear to

7 Note that even a circular silhouette can look like a sphere when placed
in the appropriate 3D context, such as on the image of a ground plane. In
this case, there is no medial axis and no propagable segment of occluding
contour.

8 Just as there is no necessary and sufficient image cue for amodal
completion (Tse, 1999a),-there appears to be no necessary and sufficient
image cue for 3D form. While occluding and surface contours are strong
cues to the recovery of 3D shape, they are by no means necessary cues
because shape can be seen in the absence of either.

® They could also imply partial submersion of the surface in an occlud-
ing medium.
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Figure 21. Because the surface contours have tangent discontinuities
with the occluding contour, the occluding contour is seen as projecting
from a rim that lies on a sharp corner or edge.

comprise a corner on the surface of a chevron. A surface contour
will be interpreted as a corner when it intersects with a sharp
tangent discontinuity along the occluding contour, as here, because
a surface tangent discontinuity at the rim will project to a contour
discontinuity assuming a nonaccidental view. Conversely, the ab-
sence of such a correlation (i.e., a Y or arrow junction) in the image
indicates that the surface contour does not correspond to a surface
tangent discontinuity or corner in the world. In the case shown in
Figure 22B, the entire occluding contour serves as the projection of
a cross-section, and this information can be propagated inward in
interaction with the presumed corners.

General Discussion
Comparison With Other Shape Descriptions

There are several shape formation models in the literature. The
primary ones are (a) codon theory (Richards & Hoffman, 1985;
Richards et al., 1987), (b) a parts-based or structural approach such
as the geon theory of Biederman (1987; Biederman & Gerhard-
stein, 1995; Hummel & Biederman, 1992), (¢) a medial axis
approach (e.g., Blum, 1973; Kovacs & Julesz, 1994), and (d) an
approach premised on the complete recovery of visible surface
orientations and depths (Marr, 1982). In this article I have outlined
another approach to shape perception, surface filling-in, and vol-
ume formation premised on the ideas of contour propagation and
the recovery of cross-sectional information. This contour propa-
gation approach is offered as a solution to the specific problem of
how 3D form might be seen in silhouettes. It is not meant to
replace existing theories and, indeed, could supplement versions of
any of the four major theories. It is important to keep in mind that
the representation of 3D shape used by the visual system may not
be monolithic. Shape codes could involve aspects of more than one
of these theories, depending on the particular problem to be solved.
For the particular problem of recovering 3D shape from 2D con-
tours, a contour propagation approach may result in a more useful
and less ambiguous shape description than those of other theories.

It is, therefore, instructive to compare the contour propagation
algorithm with each of the four major shape theories.

The codon theory (Richards & Hoffman, 1985; Richards et al.,
1987), discussed before in relation to Figure 14, imposes useful
constraints on which 3D shapes can be inferred from a silhouette.
The bump, for example, inferred from the silhouette shown in
Figure 1A, is one solution available in a large family of solutions
consistent with a codon description. However, there is nothing in
the codon theory itself that would explain why observers see a
bump here rather than a Brazil nut. Thus, the codon approach
offers useful constraints on possible shapes but does not predict
which specific shape of all possible shapes will be perceived. The
contour propagation approach, in contrast, predicts more precisely
which specific shapes will be perceived from a given silhouette
and can predict which silhouettes will look 3D and which will look
flat. The codon theory makes mistakes because it is built on the
flawed assumption that all silhouettes arise from 3D objects. Thus,
an elliptical silhouette is claimed to look like an ellipsoid when to
most observers it, in fact, looks like a flat hole or disk lying on a
ground plane. Contour propagation predicts correctly that an el-
liptical silhouette, and indeed all the silhouettes in Figure 1B, will
look flat.

The geon theory of Biederman (1987) is built on the idea that
objects can be represented in view-invariant terms as an assem-
blage of primitive parts called geons. This theory is not able to
infer a bump from the silhouette shown in Figure 1A because there
are no parts in a bump, and a bump is not one of the volumetric
primitives that Biederman posited. It would be futile to create a
new shape primitive for every possible 3D object that lacks obvi-
ous parts because there are countless partless objects. Imagine
walking into a cave full of arbitrarily shaped rock formations, none
of which are segmentable into parts. We can clearly see the shape
of these stone formations without being able to specify their parts.
A confusion may arise because geons have perhaps been regarded
as a solution to two independent problems: (a) shape formation, on
the one hand, and (b) object recognition, on the other. Although 3D
parts may be a useful way to index a shape in memory to recognize
something, 3D shapes need to be constructed before they can be
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Figure 22.  Surface contours can specify corners of the surface, especially
when they intersect points of tangent discontinuity at the occluding con-
tour. The whole occluding contour acts as a propagable segment in this
example.
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segmented into 3D parts.'® It is, therefore, unlikely that shapes are
themselves constructed from a small alphabet of primitive simple
shapes. However, once surfaces and volumes have been con-
structed, it is reasonable that these are segmented at regions of
local minima of surface curvature (compare Hoffman & Richards,
1984; Hoffman & Singh, 1997) and that these parts may serve as
an index for the matches to memory that underlie recognition. A
solution to the primary problem of shape formation should not be
limited to combinations of primitive volumes because many
shapes lack a distinct volume entirely, such as the surface of the
ocean or swirls of smoke. In contrast to a geon-based approach to
shape formation, the contour propagation approach is solely an
account of (a) shape formation that makes no claims about how (b)
object recognition takes place. According to the contour propaga-
tion approach, arbitrary curved surfaces and volumes can be gen-
erated from surface contours and occluding contours directly in the
absence of any visual shape primitives.

Relevant here is a large body of empirical evidence that shows
that object recognition is view dependent (e.g., Biilthoff & Edel-
man, 1992; Edelman, 1997; Tarr, 1995; Tarr & Biilthoff, 1995;
Tarr & Pinker, 1989; Tarr, Williams, Hayward, & Gauthier, 1998;
Wallis & Biilthoff, 1999) in contrast to the predictions of geon
theory. These authors generally argue that objects are represented
and stored as a series of views. However, what comprises a view
is not clear. At one extreme a view might just be a 2D image. This
extreme would have difficulty accounting for the various constan-
cies (i.e., indifferences to image transformation) expressed by the
visual system. For example, an object defined by contours alone,
motion alone, or texture alone will tend to look like it has the same
shape across these cues. Moreover, an object viewed from various
distances and under various lighting conditions will generally
appear to have the same shape, although particular images will be
very different from each other. A more moderate stance is that a
view is a collection of features, in which “feature” refers to any
diagnostic combination of light and shade, color, form, and so on
(Wallis & Biilthoff, 1999). Such features, even if they do not
explicitly represent 3D shape or depth information, may implicitly
capture 3D information, because viewpoint invariant recognition
could emerge if all views of an object are matched to the same
node in a distributed neural network (e.g., Biilthoff, Edelman, &
Tarr, 1995; Poggio & Edelman, 1990). If network models can be
built that match correctly, it may become difficult to experimen-
tally distinguish whether the visual system constructs explicit
representations of 3D shape or whether it only acts as though it did.
At the other extreme, a view might include an explicit represen-
tation of 3D shape. Tarr and Kriegman (2000), for example,
suggested that a view is a span of viewpoints over which the
qualitative shape description, in terms of occluding contour rela-
tionships, does not change. This converges to a certain extent with
the revised version of geon theory (Biederman & Gerhardstein,
1995; Hummel & Biederman, 1992), according to which recogni-
tion will be view invariant only over a set of views for which a
given collection of geons is visible.

The contour propagation algorithm is consistent with these more
recent stances of both the viewpoint-dependent (Tarr & Kriegman,
2000) and viewpoint-invariant (Biederman & Gerhardstein, 1995)
schools. The nonmetric shape description that emerges from con-
tour propagation in terms of relative slant, tilt, and depth is
viewpoint dependent, because surface orientation and position at a

given point on a surface are coded not only in ordinal relation to
the orientations and depths of neighboring points on that surface
(i.e., more or less slanted, closer or farther) but also in relation to
the position of the observer. Indeed, by their very nature, slant, tilt,
and depth are meaningful descriptions only with respect to a given
viewing position. However, 3D structures (e.g., holes, protrusions,
parts, corners, valleys, indentations) and the particular spatial
relationships that hold among them (e.g., hole below pinnacle
above bulge) that can be discerned from a given viewpoint are
intrinsic to the object and can underlie a viewpoint-invariant
representation of shape because these same structures will be
visible from many other viewpoints. Even if a geon description per
se is not used by the visual system for recognition, it is likely that
some other structural description is. In general, the visual system
attempts to recover the intrinsic properties of objects (e.g., surface
reflectance, material substance, 3D shape) because these are more
or less constant, whereas extrinsic properties (e.g., lighting, shad-
ing, shadows, distance, orientation) are constantly changing. Both
intrinsic and extrinsic information can be derived from the image,
and probably both types are stored and used for various tasks,
including recognition.

Medial axis theory is inadequate because current algorithms
calculate axes in the image, not in the world. Yet it is not clear how
to generate medial axes in a 3D sense. Take, for example, a bump.
If we generalize the center-of-the circle algorithm to a center-of-
the-sphere algorithm (such that a sphere would grow from within
the volume until it maximally “kissed” the inside surfaces of the
bump), the “medial axis” would be a slightly curved disklike shape
embedded in the bump (compare Mohr & Bajcsy, 1983; Nackman,
1982). This approach is not useful because it requires that we have
the 3D shape description of the bump already, and this is just what
we are trying to recover from the image. If we limit ourselves to
determining axes in the image, then the medial axis approach can
give wrong solutions, as shown in Figure 18a. In contrast to a
medial axis approach to shape formation, the contour propagation
approach places emphasis on existing contours that convey local
cross-sectional and surface curvature information that can be gen-
eralized across the image. Nonetheless, the contour propagation
approach is not incompatible with a medial axis approach. Note
that inferred cross-sectional information may interact with a me-
dial axis (Figure 17).

Metric surface recovery theories (e.g., Marr, 1982; Marr &
Nishihara, 1978/1992; see also Gibson, 1950; Gibson & Robinson,
1935) maintain that perceived shape depends on recovering precise
values of depth and surface orientation in viewer-centered coordi-
nates for every point of a visible surface.'' This approach to shape
recovery is incorrect because the shape code underlying visual
perception is not metric (i.e., euclidean). More recently, an exten-

'® A local minimum of image contour curvature does not necessarily
correspond to a local minimum of surface curvature and is, therefore, not
a reliable means of discerning object parts. A helix or spring, for example,
would project to a silhouette with many L-junctions arising from self-
occlusion. However, the 3D object has no parts to speak of.

' About the time that Marr hit on the idea, Gibson (1979) came to
repudiate his earlier (Gibson, 1950) notion that form perception is based on
a determination of local depths and orientations because he found that
subjects are in fact poor at judging even the slant of planar surfaces.
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sive literature has emerged showing that there is substantial vari-
ance and inaccuracy when observers try to specify depth and
orientation values for positions on a surface, even when given
varied or multiple sources of visual information (e.g., shading:
Erens, Kappers, & Koenderink, 1993a, 1993b; Koenderink, van
Doorn, & Kappers, 1992; Todd & Mingolla, 1983; visual contours:
Koenderink, van Doorn, Kappers, & Todd, 1997; texture: Reichel,
Todd, & Yilmaz, 1995; Todd & Akerstrom, 1987; motion: Todd &
Bressan, 1990; Todd & Norman, 1995; binocular disparity: Mc-
Kee, Welch, Taylor, & Bowne, 1990; Koenderink, Kappers, Todd,
& Norman, 1996). Most shape-from-x cues, including motion
parallax, perspective, texture gradients, surface contours (e.g.,
Knill, 1992; Todd & Reichel, 1990), occluding contours (e.g.,
Koenderink, 1984), highlights, shading, or shadows, can only
provide information about the sign of surface curvature (Beusmans
et al., 1987). These shape-from-x cues can perhaps provide infor-
mation about relative surface orientation or curvature but not about
absolute surface orientation or curvature. Two shape-from-x cues,
disparity (Carman & Welch, 1992; Gregory, 1970; Julesz, 1971;
Marr & Poggio, 1977) and motion (Ullman, 1979), can, in prin-
ciple, provide information about absolute surface curvature at any
visible point of an object provided that certain reasonable assump-
tions, such as object rigidity, are adopted. However, the visual
system does not seem to exploit this image information fully
because perceived shape is not coded metrically (e.g., Koenderink
et al., 1992; Koenderink, van Doorn, & Kappers, 1994, 1995;
Koenderink, van Doorn, Christou & Lappin, 1996; Reichel et al.,
1995; Todd & Norman, 1995) at least insofar as depth and surface
orientation are not precisely represented. It appears that the visual
system may be satisfied with a fairly inaccurate representation of
3D form rather than the precise one hoped for in Marr’s (1982)
program.

After researchers rejected Marr’s (1982) program for the metric
recovery of surface orientation and distance, it was not clear what
type of shape description could or should replace it. Just because
a metric description is not attainable does not mean that precise
shape information cannot be recovered from the image. However,
none of the major contour-based approaches to form perception
besides Marr’s offer a program for the recovery of precise shape
information from the image. Certainly, geons (Biederman, 1987),
codons (Richards et al., 1987), or medial axes (e.g., Kovacs et al.,
1998) are not capable of uniquely or metrically specifying the
curved internal structure of a surface. However, these other ap-
proaches cannot even give a precise ordinal or relational descrip-
tion of the curved internal structure of a surface. There seems to be
a gap between the precise but metric description of shape that Marr
sought and the imprecise, nonmetric shape descriptions that have
been offered in its place. One goal of the current work, then, has
been to try to help bridge this gap by developing an account of how
precise shape relations that specify the ordinal or affine structure
of a surface can be recovered from image contours. In contrast to
a metric approach, the contour propagation approach to shape
formation is inherently relational and ordinal. For example, we can
tell which of two neighboring points has more slant without being
able to specify the precise metric value of slant at either point. The
relationships it describes are, moreover, rotation, scale, and trans-
lation invariant. A more detailed description of how contour prop-
agation implies that shape is coded in terms of relative angle, slant,
tilt, and curvature can be found in Items 6 to 9 of Appendix A.

In sum, of all these approaches, only the contour propagation
approach provides a shape description that accounts for why the
silhouette in Figure 1a looks like a bump rather than some other
shape. Indeed, none of the other theories of how shape is coded can
explain why we see the surface shapes that we do in the interior of
a silhouette. The planar cut approach developed here argues that
we see shape in the interior of a silhouette because of contour
propagation. Contour propagation in interaction with other image
cues, in turn, specifies how planar cuts are maintained and de-
formed over a volume. This also explains why some silhouettes
look 3D and others look flat. Contour propagation can interact with
constraints provided by codons or medial axes but offers new
constraints on 3D form perception and the nature of the shape code
used by the shape-from-contour system. In particular, the process
of contour propagation can be thought of as the filling in of a
curved surface from the boundary.

Future Directions and Unanswered Questions

The contour propagation approach can be taken in many direc-
tions in future work. Of immediate interest is the application of the
algorithm described here in the context of computer vision. Prob-
lems may arise in its practical application that were not foreseen on
theoretical grounds. I have ignored the hard problems of local edge
extraction and global contour formation. In practice, these are
extremely difficult problems that probably require top-down pro-
cessing (e.g., Lee, Mumford, Romero, & Lamme, 1998; Leopold
& Logothetis, 1999). Also, the problem of how arbitrary curves
might be fit with lines and arcs of an ellipse was not addressed in
detail. In practice, very slight deformations of a contour may
require a radically different fit depending on the nature of the
fitting rule. For example, if the bump silhouette is deformed
slightly along its base as in Figure 23a, an entirely new curvature
discontinuity is introduced. A similar problem might be introduced
by the irregular base of a tree trunk such as the one depicted in
Figure 23b. One way to deal with this problem is to fit quadratic
segments at multiple scales. Each of the small irregular curves at
the base of the tree trunk could be fit with a small arc of a quadratic
curve. However, the best fitting large arc would correspond to the

(a) : (b) (c)

Figure 23. Perturbing a propagable segment creates abrupt changes in
contour curvature that must be discounted. (a) The silhouette still looks like
a bump. (b) The “tree stump” may still appear to have an approximately
circular cross-section. This requires smoothing (c).
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one shown in Figure 23c. This would amount to a smoothing
process.

Another potential problem that might arise in the practical
application of this algorithm may occur in dealing with parts of an
image. Consider the silhouette shown in Figure 24a. The best
approximation to this might be the four separate subsilhouettes
shown in Figure 24b. The propagation algorithm could be applied
after an image-based segmentation into parts (e.g., Hoffman &
Richards, 1984; Hoffman & Singh, 1997) at points of deep con-
cavity along the contour so that local propagable segments of
occluding contour could propagate within each part without inter-
ference from other more distal propagations.

Another direction for future work will involve investigating how
contour propagation interacts with other cues to 3D form. There
are, no doubt, many interesting ways in which the shape-from-
contour system can constrain and be constrained by the other
shape-from-x systems. I have limited this discussion to shape cues
available in static contours. This approach is not ecological. In the
real world, an animal would probably move its head if it had any
doubt about the layout of an object’s surfaces. An interesting
avenue of research involves examining the interactions between
the shape-from-contour and shape-from-motion systems. The man-
ner in which occluding contours change as an object rotates
relative to an observer is an important cue to 3D form. For
example, when the bounding contour of a silhouette deforms such
that a tangent discontinuity suddenly appears, this can be taken as
a cue for the sudden appearance of a self-occluding or previously
occluded portion of surface. When the occluding contour becomes
less curved, the underlying surface must also become less curved.
How the visual system integrates these changes over time to
recover surface layout is an important problem (see Norman,
Dawson, & Raines, 2000; Raines & Norman, 1999). Even though
information recovered from any particular view must be in a
viewer-centered coordinate frame, the integration of relational
information over a succession of views probably aids in the con-
struction of a representation of shape in a nonmetric but object-
centered frame (cf. Edelman & Weinshall, 1991; Foldiak, 1991;
Perrett & Oram, 1993; Wallis & Biilthoff, 1999; Wallis & Rolls,
1997).

1‘\

(a) (b)

Figure 24.  Segmentation (b) based on deep concavities within the image
(a) may precede filling-in from propagable segments so that local propa-
gations do not interfere.

Psychophysical experiments are needed to test the idea of con-
tour propagation. Experiments should be able to ascertain whether
a process of propagation actually takes place over time or whether
occluding contours simply impose constraints on shape solutions
that emerge as complete wholes under multiple constraints simul-
taneously. If contour propagation is a process that takes place over
time, individuals may be able to judge ordinal relationships (e.g.,
closer/farther) more quickly when the judgment is made for two
points in the interior of a silhouette that lie near a propagable
segment of occluding contour than for points that lie far from a
propagable segment.

One prediction of the contour propagation account of shape
formation is that the visual system is highly sensitive to abrupt
changes in curvature along a contour. Indeed, the visual system
may be sensitive to abrupt changes of curvature without being
sensitive to tangent discontinuities per se. Tangent discontinuities
such as those found at T- or L-junctions are just a special case of
an abrupt curvature change. Certainly, in the periphery, the visual
system is not likely to make a distinction between tangent and
curvature discontinuities because the spatial resolution in the pe-
riphery is low. A tangent discontinuity will always be a curvature
discontinuity, but a curvature discontinuity need not be a tangent
discontinuity. Because curvature discontinuity is the more general
concept, it is possible that the visual system does not have special
tangent discontinuity detectors such as receptive fields tuned to T-,
X-, or L-junctions. Experimentally, curvature discontinuities are
found to be cues for rapid shape analysis because curvature dis-
continuities pop out among curves that lack curvature discontinui-
ties (Kristjansson & Tse, 2001). It is an empirical question how
abrupt a curvature discontinuity must be in order to pop out. If the
visual system is tuned to curvature, it is likely that it is tuned to
multiple curvatures at multiple scales (Zucker, Dobbins, & Iver-
son, 1989, 1992). The same applies to curvature discontinuities.

The visual system is probably also sensitive to the higher order
statistics of contours such that an irregular bounding contour is
attributed an abrupt curvature change only where the overall
curvature changes abruptly. For example, in Figure 25 the standard
silhouette, Silhouette a, has been randomly “fractalized” along its
length to an ever larger degree as one moves from Silhouettes b to
f. Some of these modified silhouettes can still look volumetric,
even though the underlying surface may now appear lumpy or
crystalline. This demonstrates that the notions of abrupt curvature
change and planar cut need to be developed further to encompass
the role played by these higher order contour statistics. One way to
accomplish this would be to process contours at several spatial
scales and average the results. At some point, as the size of the
fractals increases, the random deviations from the contour of
Silhouette a are no longer discounted as noise masking important
abrupt curvature changes. Instead, they become appendages of the
silhouette in their own right.

Finally, a planar cut assumption may be an instance of a more
general assumption made by the visual system. Namely, deviations
from linear relations in the image are due to deformations caused
by an underlying surface (or other spatiotemporal structure in the
world). The visual system would then be sensitive to deformations
not only of lines projected onto a curved surface (the planar cut
assumption) but also of linear relationships of other kinds. It would
calculate the inverse of these deformations to recover the world
structure that caused the deformation, much as it must discount
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Figure 25. (a) The silhouettes have been subjected to greater and greater
random deviations from the original contour for Silhouettes b—f.

image deformations introduced by perspective projection in order
to recover 3D layout and shape correctly. For example, the visual
system can recover surface shape from the deformations created
when a uniform texture is projected or painted onto a curved
surface (Todd & Oomes, 2001). A typical deformation of this class
is foreshortening. How much and what types of texture nonuni-
formity can the visual system tolerate before it misinterprets tex-
ture “deformations” to be deformations caused by the underlying
surface? Todd and Reichel (1990; Figure 2) created stimuli that
can be thought of as the intersection of a “wrinkled” plane (e.g., a
piece of paper that has been crumpled and then flattened again)
with a smooth curved surface. These stimuli look similar to Fig-
ure 20 but are crossed by jagged rather than by smooth planar cuts.
Such deviations from linearity do not necessarily hamper the

recovery of underlying surface shape, suggesting that the visual
system is able to discount noise in extracting linear relations and
their surface-induced deformations. In the end, it is an empirical
question what kinds of linear relationships and deformations the
visual system can use to solve the inverse recovery problem.

Conclusion

I have outlined a new account of shape coding, surface filling in,
and volume formation based on the idea of propagating occluding
contour information to distal areas that may lack local cues to 3D
form. The central idea is that the visual system seeks out and uses
planar cut information to generate a 3D form percept. In particular,
a propagable segment of occluding contour propagates and thereby
fills in a curved surface within the image boundary of an object in
interaction with that boundary and other image cues. A propagable
segment provides information about the shape of a cross-section
that can be used to infer the shapes of cross-sections elsewhere.
The result is a nonmetric coding of 3D shape in terms of local
ordinal surface curvature, depth, and orientation relationships that
is scale, translation, and rotation invariant.
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Appendix A
Detailed Explanation of Geometric Properties

1. The projection of a planar cut corresponding to the visible portion of
a cross-section through a volume will generically lack tangent disconti-
nuities with the occluding contour projected from the rim of a volume with
surfaces that are smooth everywhere. A more general version of this claim
(Tse & Albert, 1998) is the following: For a point at which the locus of
intersection of two interpenetrating volumes meets the rim of either vol-
ume, the tangent lines of the projected contours will be identical at the
image projection of that point. Because the line of sight of the observer
grazes the surface at all points on the rim, the eye of the observer lies in the
tangent plane to the surface at rim points. Therefore, in the projection to the
retinal image, the tangent plane at a rim point collapses to a line L',
because the tangent plane is viewed edge on. Consider a differentiable
curve D on the surface passing through a rim point R. The tangent line to
‘D at R must project either to L' or to a single image point on L'. In the
latter case, the tangent line coincides with the observer’s line of sight,
implying that the observer has an accidental view. It follows that the
tangents to two such curves D1 and D2 on the surface that intersect at R
will both project from R onto L’ in the image, assuming a generic view.
Because the locus of intersection of two smooth surfaces is a smooth curve
contained in both surfaces, any junction of that locus with the differentiable
curve specified by the rim itself will not generically project tangent or
first-order discontinuities onto the retinal image. It follows as a special case
that the surface contour, which is the image projection of a locus of intersection
generated by a plane that intersects a volume, will lack tangent discontinuities
where it meets the occluding contour projected from the rim of the volume.
Similarly, a segment of occluding contour A’ that projects from a segment of
rim that lies on a planar cut (of a volume that is everywhere differentiable) is
first-order differentiable where it meets the occluding contour B’ that projects
onto the image from the rest of the rim. That s, the first derivative is uniquely
defined at points R1’ and R2’ where A’ meets B’. Indeed, the same reasoning
implies that a surface contour that projects from any surface marking,
reflectance boundary, or shadow will not generically have a tangent dis-
continuity with the occluding contour that projects from the rim.

2. The image projection of a planar cut will generically exhibit abrupt
curvature changes with the occluding contour projected from the rim.
Consider D1’ and D2, the image projections of two curves D1 and D2
lying on the surface in the neighborhood of R, which is their point of
intersection on the rim, that projects to R’. Note that the rate of curvature
change per unit of contour distance for D1’ is independent of that for D2’
because D1 and D2 are themselves arbitrary and independent curves. Even
if there are no sudden changes in the rate of curvature change per unit
length of contour along either D1’ or D2’, there will generically be an
abrupt curvature change at the image point R’ because of this indepen-
dence. That is, the rate of curvature change will suddenly shift from D1’ to
D2’ as one passes through R’ even though there is no contour tangent
discontinuity at R’, as proven under Item 1. If there is no curvature
discontinuity at R’, then the observer has an accidental view, or the planar
cut includes the rim on both sides of R, which can be thought of as an
accidental arrangement rather than an accidental view.

As a special case, the image projection of a planar cut will generically
have a curvature discontinuity where it meets the image projection of the
rim because the shape of a volume’s cross-section can vary independently
of the shape of the rim. Thus, with regard to the shape of a silhouette’s
outline, a segment of occluding contour A’ that projects onto the image
from a segment of rim A that lies on a planar cut of the volume will
generically meet the image contour segment B’ at R1’ and R2’ with
curvature discontinuities.

In particular, let D1 coincide with the rim in the neighborhood of R and
let D2 coincide with the locus of intersection lying on the surface resulting
from a transverse planar cut. The suddenness with which the rate of
curvature change shifts as one moves from D1’ to D2’ is enhanced by the

fact that typically, as one approaches R’ from D2’, the image becomes
increasingly compressed the closer one is to R’. For D1 that lies in the
frontoparallel plane, this is because the surface normal for points along D2
becomes closer and closer to lying in the frontoparallel plane as one
approaches R. That is, the surface normals tend toward perpendicularity
with the line of sight as one approaches R. This follows because points of
D2 within some finite neighborhood of R will lie closer to the observer the
further one is from R for volumes whose surfaces are everywhere differ-
entiable. Thus, the image projections of two points that are a fixed unit of
distance apart on D2 will appear closer to one another on D2’ as the pair
approaches R’. This will effectively accelerate the rate of curvature change
for D2’ but not for D1’. As DI deviates from lying in the frontoparallel
plane, this effect of foreshortening will diminish. Although the rim is in no
way bound to lie in the frontoparallel plane, a segment of rim that does not
lie in the frontoparallel plane will project to a shorter contour in the image
than a segment of rim of equal length that does lie in the frontoparallel
plane. Thus, more occluding contour will tend to project from rim seg-
ments that lie on less slanted planes than lie on more highly slanted planes.
In the absence of other image information implying otherwise, there may,
therefore, be a bias toward placing D1 in or near the frontoparallel plane.

3.. A segment of occluding contour that lacks curvature discontinuities
projects from a segment of rim lying on a plane. Let us say a segment of
occluding contour that lacks a curvature discontinuity projects from con-
nected segments of rim that lie on two or more nonidentical planes.
Assume that there are a finite number N of such planes and that the angle
between any two of them is noninfinitesimal. These N rim segments will
define a curve lying on the 3D surface that projects to the image. A slight
change in viewpoint should give rise to a curvature discontinuity in the
image for the contour that projects from this curve on the surface precisely
because its segments lie on different planes, as proven before. Because we
assume a nonaccidental viewpoint, it follows that a lack of curvature discon-
tinuities in an image contour segment arises from a coplanar rim segment.

Note, however, that if N is allowed to go to infinity, then cases could
arise in which a nonplanar segment of rim projects to a segment of
occluding contour that lacks abrupt changes in curvature. This is because
the planes corresponding to adjacent planar rim segments could differ by
only an infinitesimal angle and no curvature discontinuities would arise in
the image. However, because the resolution of the visual system is limited,
it will not be able to detect curvature discontinuities that are smaller than
some threshold. It will, therefore, not be able to distinguish nearly coplanar
from coplanar rim segments, if the deviation from coplanarity is small. A
corollary of the nonaccidental view assumption is that the visual system
assumes that all information necessary to infer x is present in the image. In
other words, if x is not detected in the image, the existence of x is not
assumed. It follows from the assumption of nonaccidentality that segments
of occluding contour that have subthreshold curvature discontinuities will
be taken to lack curvature discontinuities. They will, therefore, be taken to
project from a coplanar segment of rim.

4. Let D coincide with the segment of rim on one side of a rim point R
and let A be a segment of rim lying on a planar cut that intersects D at R.
In general, the abruptness of the curvature change as one moves from D’
to A' in the image decreases as the planes on which D and A lie approach
one another. If we only consider the portion of D in the immediate
neighborhood of R, it can be estimated by a line segment. Assume that D
lies on the least slanted plane that contains this line. Imagine that the planes
that contain D and A are perpendicular to one another. As the plane that
contains A approaches the plane that contains D, A will approach D. If the
angle between these two planes approaches 180 degrees, A’ will increas-
ingly appear to align with D’ in the neighborhood of R’. Therefore, the
abruptness of the curvature change between D’ and A’ decreases. An
example of this is shown in Figure Ala. As the abruptness of the curvature
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Al(b)

Figure Al.

(a and b) The segment of rim that projects to A’ has increas-
ingly less slant as it progresses from a to d. From e to g, it is placed in the
frontoparallel plane. As the planes on which adjacent rim segments A and
D converge, the abruptness of the curvature discontinuity as one goes from
A’ and D’ in the image increases.

discontinuity between A’ and D' decreases as we go from a to g, the plane
on which A lies appears to approach the plane on which D lies. Beyond a
certain point, the curvature discontinuity is no longer abrupt enough to
indicate a transversal planar cut, and the silhouette begins to look either flat
or, if still volumetric, rounded at its end such that A and D are approxi-
mately coplanar. Note, however, that the decrease in the abruptness of
curvature change between D’ and A’ could also be due to a change in
viewing angle rather than a change in shape. The parts of Figure Ala
appear to change shape under constant viewing angle because the propa-
gable segment of occluding contour at the base of the silhouette remains
constant. This may imply that the slant of the ground plane with respect to
the viewer remains constant. However, in Figure Alb, that also changes, so
that, as we move from (a) to (d), we seem to be viewing a cylinder from
different heights or a cylinder that is rotating toward us. Note that the visual
system may be expressing a bias here not only to interpret ambiguous
silhouettes in terms of familiar shapes, such as cylinders, but also to
interpret shapes as resting at right angles to the inferred ground plane (cf.
Richards et al., 1996; Tse, 2000). Beyond a certain point, however, the
degree of abruptness in curvature change between D' and A" decreases to
such an extent that the silhouette is no longer consistent with a cylinder
interpretation. This happens beyond (d) when A’ is best fit with an ellipse
that is circular. As described in the discussion of Property 5, a circular A’
would tend to imply an A that lies in the frontoparallel plane. However, if
this were the case, then the D would have to be foreshortened and D’ would
be relatively short as in Figure Al. Because this is not the case here, the
favored interpretation is a “pill.” These pill-shaped silhouettes look either
flat or like volumetric pills whose A and D lie in approximately the same
plane.

5. A propagable segment of image contour can be propagated away
from its image location in such a way that it will continue to lack tangent

discontinuities with the occluding contour segment B' and will continue to
have curvature discontinuities with B'. What follows is the core of the
propagation or filling-in algorithm. Let A be a segment of rim that lies on
a plane whose image projection A" has curvature but not tangent discon-
tinuities with B’, where B’ is the image projection of the rest of the rim
apart from A. A’ meets B’ at two points, R1" and R2'. In the image,
construct a copy of A’ and call it A*'. At first A*' exactly overlaps A'.
Now displace or propagate A*’ while keeping A’ in place, as shown in
Figure A2a. Without rotating A*' displace its endpoint E1*” (which was at
R1') a small distance As along B’ away from R1’. “Without rotation” here
means the following: Take the two endpoints E1’ and E2’ on A’ and
connect them with a line L'. After displacement of A*’, the corresponding
endpoints E1* and E2*" of A*' can be connected by a line L*’ that is
parallel to L’. After displacement, A*' now meets B’ at at least one point
R1# a distance As from R1’. The endpoint of A*’ that was not displaced
along B’ will lie in the interior of the silhouette, on B’, or outside of the
silhouette. If this endpoint E2*' does not already lie on B’, expand or
contract A*" uniformly without rotation until this endpoint lies on B". This
endpoint will lie on B’ at a point R2*" a distance Ak from R2’, as shown
in Figure Alb. The distance As need not be the same as Ak because the
orientations of B’ in the neighborhood of R1” or R2" may differ. In Figure
A2a A*' does not need rescaling to touch B’ at both of its endpoints.
However, in Figure A2c, A*' extends outside of the silhouette and needs
to be rescaled in order to yield the prop(A’) shown in Figure A2d.

If we had displaced A*' from A’ along B’ by moving E2*’ to R2*’
instead of displacing E1*’ to R1*’, and expanded or contracted A*" until
the endpoint E1*" met B', E1*’ would still meet B" at R1*' because it must
move along L*' as it contracts or expands, and L*' intersects B” at only
R1*" and R2*'. This algorithm therefore has a unique solution.

R2*

R2'

© (d)

Figure A2. The A*' in Figure A2a exactly coincides with prop(A’) in
A2b, but the A*" in A2¢ must be scaled to generate the prop(A’) shown in
A2d. prop = propagation function.

(Appendixes continue)
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Define a function “prop” such that prop(A’) equals the expanded or
contracted version of A*". Propagable segments of image contour A’ have
the following property: If A’ shared no tangent discontinuities with B’
at R1" and R2’, prop(A’) will not share tangent discontinuities with B’ at
R1*#" and R2*'. Similarly, if A’ shared curvature discontinuities with B’
at R1” and R2', prop(A’) will share curvature discontinuities with B’ at
R1*" and R2*'. If prop(A’) has tangent discontinuities or lacks curvature
discontinuities with B’, A" is not a propagable segment of contour, at least
for the special class of silhouettes under discussion now. This follows from
Items 1 and 2 because prop(A’), like A’, is supposed to be the image
projection of a planar cut of a volume with surfaces' that are differentiable
everywhere. It should, therefore, also have all the defining properties of
propagability described in these claims. One can apply the prop function
iteratively such that the next displacement of A’ after prop(A’) would be
given by prop(prop(A’)) and so forth. If As is allowed to go the limit of ds,
then a smooth curved surface can be inferred from the integration of all
prop(A’). If at some point propagation is no longer possible, then A’ will
only be partially propagable into the interior of the silhouette.

6. A propagable segment cannot provide either metric slant or tilt
information about the plane from which it projects onto the image. A circle
lying flat on a plane will project to an ellipse in the image whose major axis
lies along a line whose angle relative to vertical in the image gives the tilt
of the plane. This is because the ellipse results from foreshortening of the
circle in a direction perpendicular to the tilt of the plane. Fit A’ (or
prop(A’)) with an arc of an ellipse. If we assume that A’ projects from a
circular cross-section, the major axis of the fitted ellipse will yield precise
tilt information about the plane on which the cross-section lies. For
arbitrary cross-sections, however, the tilt of the plane on which the cross-
section lies is only ambiguously specified by A’. If the cross-section is
elongated rather than circular, the angle of the major axis of the ellipse that
is fit to A" in the image will not generically yield precise tilt information.
The visual system is, therefore, confronted with an ambiguity in interpret-
ing the causes of an image. It can either attribute the shape of A’ to the
shape of A or to compression as a result of foreshortening (or some
combination of both causes). Given only A’, there is no way of knowing
which factor has caused the shape of A’.

Similarly, given A’, slant is ambiguous because an ellipse in the image
can project from multiple ellipses in the world placed on planes of arbitrary
slant. Because the shape of the cross-section cannot be precisely known
given only A, the slant of the plane on which the cross-section lies can also
not be precisely specified. Thus, a given A’ cannot provide metric slant or
tilt information about the plane from which it projects onto the image.

7. A" and prop(A’) can offer relative slant, tilt, and surface curvature
information about the surface of a volume under certain assumptions.
Consider a planar cut A* of a volume that does not lie on the volume’s rim,
as shown in Figure A3. A* lies on a plane P,*. The image projection of A*
is A*', a curve lying inside the corresponding silhouette, as shown in
Figure A4. (A*' need not be an instance of prop(A’)). P,* intersects two
rim points R1* and R2*. The tilt of the plane Pg,. that is tangent to the
volume’s surface at R1* containing the line of sight is known because the
line of sight lies in both Py, . and the vertical plane. Pg,. projects to the line
Ly« in the image. Tilt can be measured in the image as the angular
difference between vertical and Ly ... Moreover, the slant of Pg,. is zero
degrees (i.e., perpendicular to the frontoparallel plane), assuming ortho-
graphic projection. Similarly, Pr,. projects to a line Ly,.. in the image.
Thus, the slant and tilt of surface tangents to points on the rim are precisely
specifiable from image information. Note that although the slant of Py,.
and Pg,. is 0 degrees in both cases their tilts may be different.

Can the precisely known slant and tilt of Pg,. and Pg,. be used to
estimate slant and tilt information for points on A* between R1* and R2*?
The answer is no for the general case because neither the precise tilt nor
slant of P,. can be determined from the image. For the general case in
which R1* and R2* lie at different depths, the precise tilt cannot be known
for P . because the line L" can be the same in the image for different slants

The object in the world

Figure A3.  Plane P,. slices through the object in the world as shown. The
line of sight lies in planes Py . and Py,.. Labeled quantities are discussed
in the text.

of P, (P,. must pass through the line L connecting R1* and R2*, and this
line projects to L".) For example, L' might be horizontal because R1* and
R2* lie at the same depth and height, or L’ might be horizontal because
RI* and R2* lie at different depths and different heights.

The situation is more tractable for the special case in which R1* and R2*
are assumed or known to lie at the same depth. Consider the angle between
P,. and Pg,.. At R1* this angle is ¢1*. The angle ¢1* can be measured in
the image as the angle ¢1*’ between L’ and Lg,.., where L’ is the line
connecting R1#*" and R2*'. At R2* the corresponding angle is ¢2*. The
angle ¢ between the tangent plane to the volume’s surface (at points along
A*) and P. can be assumed to vary smoothly between ¢1* and ¢2* in the
absence of image cues to the contrary. Thus, ¢ can be generated at each
point on A* by some weighted average of ¢1* and ¢2*. The angle for some
point p on A* that lies x% of the way between R1* and R2* along A*
might be given, for example, by a formula such as gp* = (100 — x)g1*
+ (x)92%)/100. This would amount to translating the tilt of Py ;. or Pg,.
into slant. Relative slant and tilt information could be estimated in various
ways. As the tangent to A*" approaches the extreme given by Py .., for
example, the corresponding surface normal to A* would approach zero
slant and the tilt of Pg,.. Also, because L is presumed to lie in the
frontoparallel plane for this special case, the point on A* closest to the
observer would be the one farthest from L. This would project to the point
on A*' that is farthest away from L’. These points are shown as points p,,;,
and p,,;," in Figures A3 and A4. They correspond to points at which the
surface is locally least slanted. In the image, the tangent to p,,,," will have
the slope of L. There could be several points along A*’ with this tangent,
each counting as a local point of least slant.

The problem of recovering relative surface curvature information along
A* is comparably much simpler than recovering relative slant and tilt in the
general case in which R1* and R2* do not lie at a common depth. Relative
surface curvature information along A* would be revealed by the relative
sharpness of contour curvature along A*’. Within a small neighborhood,
the contour curvature introduced by foreshortening could be ignored, and
points on A*’ with high contour curvature would correspond to points on
A* with high surface curvature.

If it is true that shape is coded relationally, then two objects that have the
same shape relationships or ratios over relevant dimensions should appear
to have the same shape even when their metric or absolute values of size,
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The image projection

R1*

pmin' /R2

occluding contour —%

Figure A4. This figure corresponds to the image projection of Figure A3.
Labeled quantities are discussed in the text.

slant, and so forth differ radically. A common illusion demonstrating that
this is so is a cameo or relief such as Lincoln’s face on a penny. Even
though a cameo has completely different metric values of orientation and
curvature along its curved surfaces than a real face has in profile, the
important slant, tilt, size, and angle relationships are preserved, and it is
this fact that makes cameos seem so realistic. Belhumeur, Kriegman, and
Yuille (1999) proved that no visual system can recover metric information
about a surface from its shading or shadows in principle. This is because
any linear scaling of, for example, a relief’s surface along the line of sight
(plus a plane) will result in a surface that is capable of casting the same
image as the original unscaled relief, assuming orthographic projection and
a movable light source. Thus, any visual system, animal or machine, can
only recover the shape of a surface from shadows or shading up to a scale
factor in the direction of the line of sight. This result implies that any
coding of shape-from-shading or shape-from-shadows must be nonmetric.
Not surprisingly, then, psychophysical evidence indicates that the human
visual system only recovers relevant shape relationships rather than precise
surface depths and orientations (Koenderink, van Doorn, & Christou,
1996). Although the nature of such a shape code must be nonmetric, it is
not clear what the nature of the nonmetric representation used by the
human visual system might be. The three main contenders are (a) an affine
representation (i.e., those in which affine transformations are equivalent;
Koenderink & van Doorn, 1991; Rosenholtz & Koenderink, 1996; Shapiro,
Zisserman, & Brady, 1995; Ullman & Basri, 1991); (b) a projective
representation (Faugeras, 1995); and (c) an ordinal representation (Fermul-
ler & Aloimonos, 1996).

A relational rather than metric coding of shape would also underlie the
fact that objects do not typically seem to change their shape with distance,
rotation, or scaling, even though the retinal image will change size under
such operations. An example of the type of relationship that could underlie
translation, rotation, and size constancy is the angle subtended by pairs of
contour tangents to the occluding contour in the image. The angle between

two contour tangents will be the angle between the two projecting surface
tangent planes at corresponding rim points, because the line of sight lies in
the tangent plane to the surface for rim points. For example, the angle
subtended between the two tangents to the silhouette shown in Figure A5
would remain constant regardless of distance, rotation, or size assuming
orthographic projection and assuming that the corresponding points on the
rim of the object remain the same. (Even assuming a perspective projec-
tion, the rim points would tend to move short distances over a volume’s
surface relative to changes in object distance or size. Thus, even under
perspective projection, relative angles would in most cases change only
very little with scaling or distance of the object that casts the silhouette.)
Figure A5b might be the image projection of the same object that projects
to ASa if we were to move it further away or uniformly shrink it. Note that
the angle between the two tangents remains constant despite the change in
size from Figure A5a to A5b. Relations among occluding contours, there-
fore, reveal invariant information about surface tangent relationships re-
gardless of size or distance. Once surface tangent information is available
for points at the rim, the visual system may link known surface tangents in
the smoothest possible way.

8. Let C' be a contour segment between but not including two inflection
points I1' and 12" that has positive contour curvature everywhere. There
will be a planar cut G that projects to a curve G', which links two points
on C' such that G' has no inflection points. Because C' has positive
contour curvature everywhere, it has no inflection points. C" is the projec-
tion of a segment of rim C. If a region of negative surface curvature N
crossed C, there would be inflection points along C’ because the sign of
contour curvature corresponds to the sign of surface curvature at the rim
(Koenderink, 1984). Because C’ has positive curvature everywhere, there
is no region N that meets C. Assuming a nonaccidental view, there must be
a noninfinitesimal distance Ax separating any region N and C. Any planar
cut G that passes through two points on C that does not pass through N will
only pass through regions of visible surface that have positive surface
curvature. (Because we are assuming a nonaccidental view, we also assume
that there are no islands of concavity or regions of negative curvature that
do not meet the rim and reveal themselves by inflection points along the
occluding contour.) One such planar cut is given by the cross-section that
is defined by the following three points: two points on C (Cl in the
neighborhood of 11, and C2 in the neighborhood of 12 that project to Cl’
and C2’ in the neighborhood of I1” and I2’, respectively) and one visible
nonrim point P on the surface between C and N that projects to P’, as
shown in Figure A6. G will generically have inflection points when G
does. Because all the curvature of G defined by this plane is due to the
curvature of the underlying surface, and the underlying surface has a
constant positive sign of curvature, G will not have inflection points.
Therefore, G’ will not have inflection points.

(@ (b)

Figure A5. The angle between pairs of tangents to the occluding contour
is the same as the angle between corresponding tangent planes at the rim.

(Appendixes continue)
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Figure A6. G’ lacks inflection points because the corresponding planar
cut G only passes through regions of positive surface curvature.

A planar cut projecting onto a surface contour in the interior of a
silhouette that satisfies the prior conditions will not have inflection points.
If the plane defining the planar cut passes above the line of sight, the
surface contour in the image will appear to bulge upward from points C1’
and C2'. If the plane passes below the line of sight, it will appear to bulge
downward from C1” and C2', as shown in Figure A7. Of course, if the

Figure A7.

(a and b) If the intersecting plane passes below (above) the
eyes of the viewer, the image projection of the planar cut will bulge
downward (upward).

plane included the line of sight, the surface contour that projects from the
planar cut would be a line segment in the image, but that would be an
accidental view. This is why the top-most surface contour in Figure 3b has
no inflection points even though the prop(A’) in the neighborhood of A’ do
have inflection points. As the prop(A’) propagate, they interact with the
rest of the occluding contour B’ in such a way that prop(A’) deforms to be
consistent with the surface curvature implied by B'.

9. Let C' be a contour segment between but not including two inflection
points 11" and 12' that contains two and only two inflection points I3' and
14'. Moreover, let the curvature between 13" and 14" be negative. There will
be a planar cut G that projects to a surface contour G', which links two
points on C' such that G' has at least two inflection points. Because the
curvature between I3’ and I4’ is negative, the corresponding surface
curvature at the rim must be negative. Because the curvature between 11’
and 13" (or between 12" and 14") is positive, the corresponding surface
curvature at the rim must also be positive. A region of negative surface
curvature N must cross the rim segment that lies between the points 13 and
I4. Assuming a nonaccidental view, N will continue away from the rim
some noninfinitesimal distance Ax. Consider the cross-section defined by
the following three points: two points on C (C1 in the neighborhood of 11
and C2 in the neighborhood of 12 that project to C1’ and C2' in the
neighborhood of I1" and 12’, respectively) and one visible nonrim point P
on the surface within N, as shown in Figure A8. The planar cut G given by
this cross-section will pass through a region of positive surface curvature,
then through N, and then again through a region of positive surface
curvature. Any point in N will have one direction of positive principal
curvature and one direction of negative principal curvature. G can be
chosen so that it will have inflection points if some of its tangents lie in the
direction of negative principal curvature. G’ will, therefore, have at least
two inflection points corresponding to the points at which G crosses from
N into the regions of positive surface curvature outside of N.

Figure A8. G’ has at least two inflection points because the planar cut G
has inflection points where it crosses from regions of positive surface
curvature to negative.
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Appendix B

Glossary of Terms

Abrupt curvature changes: Curvature changes along an occluding con-
tour revealed by discontinuous or nearly discontinuous tangents to the
contour.

Contour curvature: The first derivative along an image contour at a point
P on the contour is the tangent to the contour at P. The second derivative
is the curvature of the contour at P and is given by the inverse of the radius
of a circle that has the same curvature at P as the contour, when the contour
and circle are traversed in the same sense. Let us say that the interior of a
silhouette lies on our left side as we move along its bounding contour.
Segments of contour where the next point that we traverse lies to the left
(right) of the instantaneous tangent of the point where we are now have
positive (negative) contour curvature. Inflection points along a smooth
contour have zero curvature and separate segments with positive and
negative contour curvature.

Curvature discontinuity: See “second-order discontinuity.”

First-order discontinuity: A first-order discontinuity along a contour
occurs at a point at which the first derivative or tangent is not well defined.
For example, there is no unique tangent at a corner along a contour.

Geodesic: The shortest path along a surface that connects two points on
that surface.

Nonaccidentality: A nonaccidental or “generic” view is one for which a
slight shift of viewpoint in an arbitrary direction will not lead to a radical
change in image structure. Assuming such a viewpoint, a straight (curved)
line in the image projects from a straight (curved) line segment of rim in
the world (cf. Grimson, 1982; Lowe, 1987). Instead of talking about
accidental views, it would be better to talk of accidental images because
accidental alignments can result from an accidental view or an accidental
arrangement of objects in the world. An accidental arrangement is one for
which a slight rearrangement of the objects would result in an image with
radically different spatial or topological relationships. For example, if the
image below results from a large square partially occluding another square,
slightly moving the objects in the world will result in more or less the same
image. However, if this image is due to a large square abutting an L shape
at the same depth plane, then a slight rearrangement of the objects in the
world would result in an image that cannot be mistaken for an image of two
squares.

Occluding contour: Occluding contours are the self-occlusion contours
projected onto the image from the “rim” of an object. The rim lying on the
surface of a volume, relative to a particular viewpoint, is the set of points
at which the observer’s line of sight grazes the surface. For a volume with
a smooth surface (i.e., differentiable as many times as necessary), the rim
is composed of a set of smooth curves and loops that divide the visible and
self-occluded surfaces of the volume. Except for special cases like spheres,
the rim almost never lies in a common plane in the world. Occluding
contours, however, lie entirely in the image plane.

Planar cut: The intersection of a plane and a volume is that volume’s
cross-section. A planar cut is the loop or set of closed nonintersecting loops
lying on the surface of a volume defined by the outline of the cross-section.
In this article, I only consider the visible portions of planar cuts and their
image projections.

Principal curvature: See “surface curvature.”

Prior: A prior assumption about the structure of the world that biases
how inherently ambiguous image data are interpreted.

Rim: See “occluding contour.”

Second-order discontinuity: A second-order discontinuity is a point
along a contour where the second derivative is not defined. In this article,
the focus is on abrupt curvature changes where the curvature changes
discretely on either side of a contour point.

Slant: The slant of a plane is the angle (between 0° and 90°) that its
surface normal makes with the line of sight. Without changing its slant, a
plane can be rotated between 0 and 360 degrees around the line of sight.
This will vary its tilt.

Surface contour: A surface contour projects from a visible curve, bound-
ary, scratch, or other discontinuity on a surface. A surface contour exists in
the image, whereas the curve on the surface of an object that projects to a
surface contour exists in the world.

Surface curvature: For any point on a smooth nonplanar surface, there is
a direction where the surface curves the most and one where it curves the
least. These directions of principal curvature are always perpendicular, and
the product of these two curvatures is the Gaussian or surface curvature of
the surface at that point (Hilbert & Cohn-Vossen, 1952). A point on a
surface will either have positive, negative, or zero curvature.

Tilt: See “slant.”
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