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a b s t r a c t 

Landmark objects are points of reference that can anchor one’s internal cognitive map to the external world while 

navigating. They are especially useful in indoor environments where other cues such as spatial geometries are 

often similar across locations. We used functional magnetic resonance imaging (fMRI) and multivariate pattern 

analysis (MVPA) to understand how the spatial significance of landmark objects is represented in the human 

brain. Participants learned the spatial layout of a virtual building with arbitrary objects as unique landmarks 

in each room during a navigation task. They were scanned while viewing the objects before and after learning. 

MVPA revealed that the neural representation of landmark objects in the right parahippocampal place area (rPPA) 

and the hippocampus transformed systematically according to their locations. Specifically, objects in different 

rooms became more distinguishable than objects in the same room. These results demonstrate that rPPA and the 

hippocampus encode the spatial significance of landmark objects in indoor spaces. 
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. Introduction 

When navigating, perceptible features of the environment allow us to

etermine where we are and which direction we are facing ( Chan et al.,

012 ). Behavioral work in humans and animals suggests that both ge-

metric cues (e.g. the spatial arrangement of topographical features)

nd non-geometric cues (e.g. landmark objects) support spatial orienta-

ion ( Julian et al., 2018 ). In outdoor settings, the geometry of the land-

cape provides a strong cue to the location of the observer in space. For

any indoor spaces, however, the geometry of subspaces (rooms) can

e very similar. In such environments, landmark objects become espe-

ially important for discriminating between otherwise indistinguishable

ubspaces. 

How are landmark objects represented in the brain? Previous work

uggests that when an object obtains the status of a landmark, it re-

ruits not only object-responsive regions such as the lateral occipital

omplex (LOC; Malach et al., 1995 ), but also scene-responsive regions

for a review, see Epstein and Baker, 2019 ), such as the parahippocam-

al place area (PPA; Epstein and Kanwisher, 1998 ), retrosplenial com-

lex (RSC; O’Craven and Kanwisher, 2000 ), and the occipital place

rea (OPA; Nakamura et al., 2000 ). Specifically, scene regions show en-
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anced responses to objects with qualities that would make them more

uitable as landmarks ( Troiani et al., 2014 ), such as being large in size

 Konkle and Oliva, 2012 ), fixed in space ( Auger et al., 2015 ; Auger and

aguire, 2013 ), or associated with navigationally relevant locations

 Janzen and van Turennout, 2004 ; Schinazi and Epstein, 2010 ). 

Although these results are intriguing, they do not provide direct ev-

dence that scene regions represent landmark objects qua landmarks.

or this, it is necessary to show that these brain regions represent a key

eature of a landmark: association with a given location (or direction).

ne study investigated this question by examining multivoxel fMRI re-

ponses while participants viewed interior and exterior views of familiar

ampus buildings ( Marchette et al., 2015 ). Views corresponding to the

ame building elicited similar multivoxel codes in PPA, RSC, and OPA.

his finding was interpreted as evidence for landmark coding, but it was

nclear whether the codes related to object identity (i.e. same building)

r place identity (i.e. same location). To unconfound these possibili-

ies, one must test whether a shared encoding exists for two different

andmark objects located in the same place. Other studies reported ev-

dence for coding of object locations in RSC ( Marchette et al., 2014 ;

ersichetti and Dilks, 2019 ) and hippocampus ( Deuker et al., 2016 ;

organ et al., 2011 ; Nielson et al., 2015 ), by showing similarity or adap-

ation effects that relate to the distances between the objects. However,

hese studies suffer from the complementary problem to the one above:
il 2021 
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Fig. 1. Stimuli and virtual environment design. a) 

Aerial view of the virtual-reality space. b) First-person 

view of the corridor room with obstacles. Participants 

were forced to walk around the obstacles to reach the 

door on the other end. They could pass through the 

doors without delay. c) Artificial objects used in the 

experiment. Each object had unique geometrical fea- 

tures. d) An example object presented during scanning. 

During presentation the object was rotating at a con- 

stant speed, similar to the training sessions outside the 

scanner. 
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t is unclear whether the location codes observed in these regions are

eneral spatial codes, or specific to landmark objects. 

To disentangle these issues, here we examined how the human brain

earns to encode objects as spatial landmarks in an indoor environment.

articipants learned the layout of a virtual building that was symmetric

nd appeared to be the same from each corner of the building ( Fig. 1 a).

ight distinct artificial objects were placed in the four corner rooms

f the building as the only landmarks. In order to effectively navigate

hrough the building, participants had to learn the location of each ob-

ect. They were scanned with fMRI before and after learning while they

iewed the eight objects in the absence of any spatial task. The neural

epresentations of the objects were compared between the pre and post

MRI sessions. Multivariate classification analyses ( Haxby et al., 2001 )

f the fMRI data were carried out based on object identity (i.e. which

bject is which) and object location (i.e. which room the objects were

n). If the classification accuracy for object location increases and goes

bove chance level after learning, then it can be inferred that the ob-

ects acquired new neural representations in the brain based on their

ocations in the virtual building. 

. Methods 

.1. Participants 

A total of n = 21 participants (12 females; 20–35 years old) from the

artmouth College community gave informed written consent to partic-

pate in the study for monetary reward. The sample size of this study was

etermined based on a previous study ( Marchette et al., 2015 ). We first

alculated the effect size of the previous study (Cohen’s d = 0.778), and

hen estimated the required sample size using G 

∗ Power (Version 3.1.9.7;

aul et al., 2007 ) with default parameters ( 𝛼 = 0.05, 1- 𝛽 = 0.95), which

esulted in a sample size of n = 20. We also conducted a sensitivity anal-

sis to calculate the minimal effect size that could be detected under dif-

erent sample sizes around n = 20 (Table S1). The minimal effect size for

 = 18 is 0.81, which is close to what was observed in Marchette et al.

2015 ; Cohen’s d = 0.778). 

One participant was excluded from the analysis due to excessive

ead movements during fMRI data collection. Two participants were

xcluded because none of their functional ROIs could be defined from
2 
ocalizer runs. Therefore, a total number of n = 18 participants were in-

luded in the analysis. Participants had normal or corrected-to-normal

ision. The study was approved by the Committee for the Protection of

uman Subjects at Dartmouth College. 

.2. Stimuli 

A virtual-reality space was built with the Unity game engine (Unity

echnologies, California; Fig. 1 a). The space consisted of the interior of

 building with four 4 m × 4 m corner rooms. The four corner rooms

ere connected by four 12 m × 4 m corridors of the same length and

ize. Two of the corridors were divided into three 4 m × 4 m small

ooms by walls, while the other two corridors were open spaces con-

aining two low obstacles (1 m high, Fig. 1 b). All doors between rooms

ould be passed through directly without any impediment. The arrange-

ent of doors and obstacles forced participants to zigzag in the same

ay through each corridor. Note that in this design, neighboring corner

ooms had the same Euclidean and path distance from each other. 

Each corner room included two 0.8 m × 0.8 m × 0.8 m boxes. Each

ox contained a unique novel object. Another two boxes were put be-

ow the boxes with objects as platforms. There were eight objects in

otal ( Fig. 1 c). The objects were built from unique mathematical equa-

ions and visualized to three-dimensional models by K3DSurf (Version

.6.2; Taha, 2014). The objects were randomly assigned to boxes for

ach participant. These location assignments remained constant across

he whole experiment. 

An important aspect of this environment was that it had a symmetric

ayout: each corner room and each pair of corridors were geometrically

dentical. Furthermore, wallpaper patterns, ceilings, floors, textures of

he doors, and textures of the boxes were identical across all rooms.

iven the geometric symmetry of the scene, the only way participants

ould uniquely identify their location was by using the objects as land-

arks. 

.3. Procedure 

The experiment included two fMRI sessions and multiple behavioral

raining sessions, which were conducted on separate days. In the first

nd last sessions (referred to as ’pre’ and ’post’ in the following), fMRI
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Fig. 2. Experiment design. a) There was a minimum of two training sessions on separate days in the experiment. ∗ More training sessions were included if participants 

did not reach the expected task performance. Each training or testing block contained 24 trials with tasks described in b). Participants were also asked to draw a 

detailed floorplan with object locations marked. Before the first and after the last training sessions, participants were scanned with fMRI while viewing the objects 

in the absence of any spatial tasks. b) Participants were trained on an object search task in order to learn the layout of the virtual building. During training trials, 

participants were able to open every box in order to identify the object in it. During testing trials, participants could only open the boxes in the room they began 

with to identify their starting location. After hitting a presumed target box, the box would not be opened and the next trial started immediately thereafter. 
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easurements were conducted while participants viewed the objects

ithout spatial context. Between pre and post scans, participants were

rained outside the scanner on the layout of the virtual space and the as-

ociation of different rooms with different objects. The training sessions

ncluded a series of training trials and testing trials. The procedure is

chematized in Fig. 2 . 

During each training trial, participants started in a random corner

oom and were shown the image of a random target object, which was

n one of the other three corner rooms. Their task was to walk to the

arget object via the shortest route. Participants walked from a first-

erson perspective and could move freely in the virtual building, with

o time limit. All objects were covered by boxes. To see the object in-

ide a box, participants had to stand in front of the box and press the

pace bar. The object was then shown slowly rotating (72 degrees per

econd), thus providing a full view of the shape of the 3D object. Once

articipants opened the box with the target object, the program paused

or three seconds and then teleported participants to a new starting cor-

er room for the next trial. Participants could press the escape key at

ny time to review the image of the current target object. They were

ncouraged to remember the locations of all objects and to open as few

oxes as possible to reach the target object. They were also advised to

pen one of the boxes in the starting room to identify their location, and

hen to recall the location of the target object relative to the beginning

oom. Each block of the training session contained twenty-four trials,
3 
epresenting a full combination of four starting rooms and six objects

utside the starting room. 

Two testing tasks were designed to evaluate participants’ progress

uring training. The first testing task was very similar to the training

rial described above. On each trial participants were teleported to one

f the corner rooms and given a target object to look for. They could

pen both boxes in their starting room in order to identify their starting

ocation. However, they were given only one chance to choose one of

he other six boxes (i.e. in one of the other corner rooms) to indicate

he location of the target object. They were not given feedback on their

hoice. After participants had pressed the space bar indicating the box

ith the target object, the box did not open, and they were teleported

o another starting room for the next trial. This testing task served as

 pure evaluation of the spatial knowledge participants currently had.

ach block of the testing task contained twenty-four trials. 

The second testing task was to draw a floorplan of the virtual build-

ng on paper with a pen. Note that participants never saw the virtual

nvironment from a bird’s-eye view during training. Participants were

sked to draw a detailed map of the space. Specifically, they had to in-

icate the exact locations of doors, obstacles, and boxes. To fulfill this

ask, they were presented with the pictures of all eight objects. Each

icture was marked with a random integer or letter. Participants were

hen requested to mark the location of each object in the building using

orresponding integers or letters. No feedback was given. 
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The training stage ranged from two to five days. Each training ses-

ion was conducted on a separate day and took about an hour to com-

lete. Although the timeline of training was not strictly controlled, the

ast training session had to be scheduled right before the day of the

ost fMRI session. All participants finished their training within two

eeks. On the first day, participants were requested to complete two

raining blocks followed by a floorplan drawing test. Starting from the

econd day, participants would do one training block and one testing

lock with a floorplan drawing test between the two blocks. The train-

ng stage ended when participants achieved an accuracy of 100% in both

he testing block and the floorplan drawing test. For the map drawing

est, accuracy was evaluated based on the correct arrangement of walls

nd doors. Furthermore, the location of objects in each corner room

ad to be specified correctly. The exact scale of the environment was

ot required. 

.4. MRI acquisition 

Functional MRI data were acquired on a Siemens 3T Prisma scanner

ith a 32-channel head coil, located at the Dartmouth College brain

maging center. The T1-weighted structural image was collected us-

ng an MPRAGE protocol (repetition time (TR) = 2.35 ms, echo time

TE) = 2.32 ms, flip angle = 8°, matrix size = 192 × 256 × 256, voxel

ize = 0.9 mm × 0.9 mm × 0.9 mm). The functional MR images were

ollected with a gradient echo planar imaging sequence (TR = 2000 ms,

E = 35 ms, flip angle = 75°, matrix size = 68 × 68 × 33, voxel

ize = 3.5 mm × 3.5 mm × 3.5 mm). 

This study included two separate fMRI sessions, one before and one

fter the behavioral training. The procedures and sequences of the pre

nd post fMRI sessions were identical. In each fMRI session participants

aw movies of eight objects rotating (72 degrees per second) in the

irtual-reality space ( Fig. 1 d). 

During each fMRI run there were three different types of trials: same-

bject trials, different-object trials (catch trials), and null trials. Each

rial was six seconds long. In same-object trials, three different movies

f the same object rotating were presented in a successive sequence with

 s for each movie, followed by a 3 s inter-trial interval with a blank

creen. Different-object trials were the same as same-object trials ex-

ept the third movie was replaced by a movie of another object. The

bjects presented in different-object trials were randomly selected. In

oth same- and different-object trials, participants were requested to

ress a button during the inter-trial interval to indicate whether the ob-

ects shown were the same or different. Different-object trials served as

atch trials in order to keep participants focused. Null trials included

 blank screen of 6 s. Two null trials were always presented succes-

ively (double blanks, 12 s in total). Eight same-object trials (one for

ach object), one different-object trial, and two consecutive null trials

double blanks) were counterbalanced using a Type-1-Index-1 sequence

 Aguirre et al., 2011 ). This design is similar to the approach used by

onnolly et al. (2016) . 

The Type-1-Index-1 sequence was broken into six separate runs. Each

un contained 55 trials, which included 5 same-object trials for each

bject (40 in total), 5 different-object trials, and 10 null trials (5 double

lanks). The beginning of each run included a 12 s blank period and the

ast 3 trials from the previous run, which helped to link the carryover

OLD signals between the runs. The blank and carryover trials were

iscarded later in the analysis. At the end of each run the last trial was

epeated one more time and another 12 s of blanks were included for

he delay of the BOLD signal. Each run lasted for 6 min 18 s. 

Participants practiced one run of the experiment on a computer out-

ide the scanner in both pre- and post-scans. The structural T1 scan

as collected during the pre-scan, while two functional localizer runs

ere conducted in the post-scan. Functional localizer runs were con-

ucted to define regions of interest (ROIs) in the LOC, PPA, RSC, and

PA, following previous descriptions ( Marchette et al., 2015 ). During

he localizer runs, participants viewed random sequences of pictures of
4 
bjects, scrambled objects, and outdoor scenes. Those three categories

ere presented in separate 15-s blocks at a rate of one second per im-

ge. Participants were asked to press a button to report 1-back repeated

mages. This task ensured that participants remained focused during the

ocalizer experiment. Each block was followed by a 15-s blank period

etween blocks. There were nine blocks of stimulation in total (three for

ach visual category). Each run lasted for 4 min 30 s. 

.5. Data preprocessing and feature extraction 

MRI data were processed using FSL 6.0 (FMRIB, Oxford, UK;

enkinson et al., 2012 ). Preprocessing of the functional MRI data of

he main experiment included brain extraction, slice timing correction,

otion correction, and high-pass filtering to account for the MRI scan-

er drift. No spatial smoothing was performed. Each run was aligned

o the participant’s T1-weighted structural image using FSL FLIRT

 Jenkinson et al., 2002 ; Jenkinson and Smith, 2001 ). The first 15 vol-

mes of each run were discarded. A general linear model (GLM) was

onducted to retrieve each voxel’s response to the eight objects using FSL

EAT ( Woolrich et al., 2001 ). Beside the eight regressors for the eight

bjects, a nuisance regressor for the different-object trial was included

n the GLM model. Each regressor was convolved with a double-gamma

emodynamic response function (HRF). The temporal derivative of each

egressor was also included in the model. 

Separate GLMs were conducted for each fMRI run and each partic-

pant. In this way, eight parameter estimation (PE) maps, each corre-

ponding to the fMRI response to one object, were generated for each

un and each participant. They were voxel-wise normalized to z -scores

ithin each run, and then served as the inputs for the following multi-

ariate pattern analysis. 

.6. ROI definition 

ROIs were defined based on activations in the functional localizer

uns. Functional MRI data from the localizers were preprocessed as de-

cribed above for the main experiment, except that images were also

patially smoothed with a Gaussian kernel of 5 mm (full width at half

aximum, FWHM). A GLM analysis was carried out to identify voxels

hat responded to scenes and objects. Three boxcar regressors for scenes,

bjects, and scrambled objects were convolved with a double-gamma

RF. Two contrasts, scenes versus objects and objects versus scrambled

bjects, were calculated. The contrasts from the two localizer runs were

ombined as a fixed effect for each participant. 

The functional ROIs were defined within each participant’s non-

ormalized individual space. The uncorrected z -contrast map was

hresholded at 1.64 (corresponding to p < 0.05). The ROIs were created

n two steps. In the first step the ROIs were defined manually from the

hresholded z -contrast map. In the second step, the top 50 voxels with

he highest z -contrast within each ROI on each side of the brain were se-

ected for the final ROIs. All ROIs were combined into unified bilateral

OIs. Each bilateral ROI therefore consisted of 100 voxels. The PPA,

SC, and OPA were defined from the scenes versus objects contrast,

hile the LOC was defined from the objects versus scrambled objects

ontrast. 

The hippocampus ROI was defined anatomically from each partic-

pant’s T1 structural image. Each participant’s structural image was

reprocessed by FreeSurfer (Martinos Center for Biomedical Imaging,

harlestown, MA; Dale et al., 1999 ). The hippocampus ROI was ex-

racted from FreeSurfer’s automated anatomical segmentation. Each

ippocampus ROI was then manually split by a coronal plane into an-

erior and posterior ROIs with approximately equal numbers of voxels.

n average, the bilateral anterior hippocampus contained 105 voxels,

hile the bilateral posterior hippocampus included 101 voxels. Then

ach bilateral ROI was further separated into unilateral ROIs. 
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.7. MVPA classification 

The ROI-based MVPA analysis was carried out based on the ROIs

nd the normalized PE maps. First, a classification on object shapes was

onducted. The classification accuracy was calculated for each ROI in

ach participant. A leave-one-run-out cross-validation procedure was

sed. Within each fold, a linear discriminant analysis (LDA) classifier

as trained on five runs to classify between the multivariate patterns of

he eight objects (8-way classification) and then applied to the left-out

un to generate the classification accuracy score. Six such folds were im-

lemented. The overall accuracy of the classification was calculated by

veraging the accuracies from all six folds. Then, the group-level accu-

acy for each ROI was calculated by averaging classification accuracies

cross participants. The classification procedures were implemented by

he CoSMoMVPA toolbox ( Oosterhof et al., 2016 ). 

For statistical inference, a permutation procedure was conducted for

ach participant. For each permutation, the object labels were shuffled.

hen, a random accuracy score based on the permuted labels was cal-

ulated by the same classification procedure described above. The per-

utation procedure was repeated 100 times for each ROI within each

articipant. 

At the group level, a bootstrap procedure was implemented to gen-

rate the group-level null distribution of the mean accuracies. For each

ootstrap, 1 of the 100 random accuracies was randomly picked from

ach participant’s permutation distribution. Then, the group mean ac-

uracy was calculated by averaging the selected accuracies across par-

icipants. This bootstrap procedure was repeated 10,000 times. Then,

ach ROI ended up with a group-level empirical null distribution

 n = 10,000). By comparing the actual group mean accuracy to the null

istribution, the p -value for each ROI on the group level could be calcu-

ated. Since this test was to determine whether the classification accu-

acy for different object shapes was significantly above chance, a one-

ailed p -value was calculated ( p < 0.05 was considered significant). This

tatistical inference procedure is adapted from the method described by

telzer et al. (2013) . All p -values were adjusted for multiple compar-

sons across 21 unilateral and bilateral ROIs by the false discovery rate

FDR) method ( Benjamini and Hochberg, 1995 ). 

The second ROI-based classification aimed to identify the brain re-

ions encoding object locations. The analysis procedure was similar to

hat used for object shape classification. However, for this analysis, the

lassifier was trained on four objects, one from each room, and then

ested on the other four objects. Classification accuracies from all pos-

ible combinations of training and testing object sets were calculated

nd then averaged. The same statistical inference procedure was ap-

lied. This 4-way cross-classification analysis excluded possible con-

ounds from object shapes, since theoretically a shape classifier trained

n one set of shapes would have difficulty to classify a novel set of

hapes. In this way, the only association between objects in the training

et and objects in the testing set was their spatial location, or the room

n which they were co-located. 

For all the classification analyses described above, changes in classi-

cation accuracies from pre to post were also calculated by subtracting

ccuracies in the pre-session from the post-session. For the statistical in-

erence, at the permutation step, data from both sessions were assigned

ith the same permutated labels. Then, the accuracy difference was cal-

ulated for each permutation. In addition, since the test here was to see

hether there was a significant change in classification accuracy from

re to post, a two-tailed p -value was calculated ( p < 0.05 was considered

ignificant). 

.8. Searchlight analysis 

A whole-brain searchlight analysis was conducted to look for pos-

ible neural representation of landmark objects outside the pre-defined

OIs. The same location classification was carried out in each search-

ight with a radius of 3 voxels based on the post learning data. Then
5 
ach individual’s accuracy change map was converted into normal-

zed MNI152 space. As an exploratory analysis, one-sample t -test was

onducted for statistical inference. Threshold-free cluster enhancement

TFCE) at 5 mm was also applied ( Smith and Nichols, 2009 ) 

. Results 

Participants needed two to five training sessions to reach an accuracy

f 100% on both testing tasks. The first 2 training sessions were manda-

ory. All training sessions were conducted on different days within two

eeks. Two participants needed 4–5 training sessions. Three partici-

ants needed 3 training sessions. The majority, thirteen participants,

eeded 2 training sessions. 

With the localizer procedure described above, LOC, PPA, and OPA

ould be identified in 17 participants. RSC could be defined in 18 partic-

pants. The hippocampus was defined structurally in all 18 participants.

ee Fig. 3 for ROI locations in an example participant. ROI-based analy-

es were carried out in each participant’s native space. The coordinates

f all ROIs in MNI space are shown in Table S2. 

The classification of object shapes was carried out separately for the

re and post fMRI sessions. The chance level for an 8-way classification

s 12.5% (dotted line in Fig. 4 ). All p -values reported were FDR-corrected

cross the whole set of 21 ROIs. We first looked at bilateral cortical ROIs

 Fig. 4 a). Object shapes could be decoded from both pre and post ses-

ions in LOC (pre: mean accuracy = 45.1%, corrected p < .001; post:

ean accuracy = 52.7%, corrected p < .001) and OPA (pre: mean accu-

acy = 23.9%, corrected p < .001; post: mean accuracy = 24.8%, cor-

ected p < .001). After training, object shapes could also be decoded

rom PPA (mean accuracy = 17.8%, corrected p < .001). A significant

ncrease of classification accuracy was observed in LOC (mean accuracy

hange = + 7.6%, corrected p = .004). 

Then the object shape classification was carried out in the unilateral

ortical ROIs ( Fig. 4 b). For the pre session, object shapes could be de-

oded significantly above chance in left LOC (mean accuracy = 29.5%,

orrected p < .001), right LOC (mean accuracy = 38.1%, corrected

 < .001), left OPA (mean accuracy = 21.2%, corrected p < .001), and

ight OPA (mean accuracy = 17.3%, corrected p < .001). For the post

ession, the same pattern of above-chance decoding was observed (left

OC: mean accuracy = 34.1%, corrected p < .001; right LOC: mean accu-

acy = 37.4%, corrected p < .001; left OPA: mean accuracy = 23.3%, cor-

ected p < .001; right OPA: mean accuracy = 21.1%, corrected p < .001).

o significant differences in classification accuracy between pre and

ost sessions were found (all corrected p s > .05). No significant decod-

ng or changes in classification accuracies could be identified in any

ubregion of the hippocampus (all corrected p s > .05; Fig. 4 c). 

The object location classification was conducted using the same pro-

edure as for shape classification. The chance level for this 4-way classi-

cation is 25% (dotted lines in Fig. 5 ). All p -values reported were FDR-

orrected across the whole set of 21 ROIs. In the pre session, locations

ould not be decoded in any of the ROIs (all corrected p s > .05). In the

ost session, there was no significant decoding in any bilateral corti-

al ROIs (all corrected p s > .05; Fig. 5 a). However, in unilateral cortical

OIs, locations could be decoded in right PPA (mean accuracy = 28.9%,

orrected p = .048) and right RSC (mean accuracy = 28.2%, corrected

 = .048; Fig. 5 b). A significant increase of classification accuracy in

ight PPA was also observed (mean accuracy change = + 6.7%, corrected

 = .017). In the hippocampal ROIs, significant location coding could be

ound in the bilateral hippocampus (mean accuracy = 28.7%, corrected

 = .048) and left anterior hippocampus (mean accuracy = 28.2%, cor-

ected p = .049; Fig. 5 c). No other subregions of the hippocampus con-

ained location information (all corrected p s > .05). There was a sig-

ificant increase of classification accuracy in the bilateral hippocampus

mean accuracy change = + 5.6%, corrected p = .036). 

An exploratory searchlight analysis based on the post learning data

as conducted to look at possible object location encoding outside the

re-defined ROIs. With an uncorrected threshold of p < 0.05, locations
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Fig. 3. Region-of-interest location in an example par- 

ticipant. The location of PPA (blue), RSC (red), OPA 

(orange) and the hippocampus (yellow) is shown in the 

left and middle slices (overlaid on the high-resolution 

anatomical scan of the participant’s brain). Further- 

more, the location of the LOC (green), PPA (blue) and 

the hippocampus (yellow) are shown in the right slice. 

Fig. 4. Classification accuracies for object shape in bilateral cortical ROIs (a), unilateral cortical ROIs (b), and hippocampal ROIs (c). Red bars show mean accuracies across 

participants from the pre training session, while green bars show mean accuracies across participants from the post training session (Hippocampus, RSC: n = 18; LOC, PPA, OPA: 

n = 17). Error bars show standard error of the mean (SEM). Dotted lines represent the chance level (12.5% for 8-way shape classification). Statistical results were corrected for 

multiple comparisons by means of FDR correction. ∗ ∗ p < .01, ∗ ∗ ∗ p < .001. Labels of unilateral ROIs are prefixed with “l ” for left and “r ” for right. l_ant_Hippo, left anterior 

hippocampus; r_ant_Hippo, right anterior hippocampus; l_pos_Hippo, left posterior hippocampus; r_pos_Hippo, right posterior hippocampus; ant_Hippo, anterior Hippocampus; 

pos_Hippo, posterior Hippocampus; Hippo, bilateral hippocampus. 

Fig. 5. Classification accuracies for object location in bilateral cortical ROIs (a), unilateral cortical ROIs (b), and hippocampal ROIs (c). Dotted lines represent the chance 

level (25% for 4-way location classification). Statistical results were corrected by FDR correction. Otherwise same as Fig. 4 . ∗ p < .05. 
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f the landmark objects could be decoded from left inferior frontal

yrus, left inferotemporal (IT) cortex ( Fig. 6 a), left anterior hippocam-

us, left PPA ( Fig. 6 b), right PPA ( Fig. 6 c), and bilateral precuneus cortex

 Fig. 6 d). Thus, the searchlight analysis supported the coding of land-

ark locations in the left anterior hippocampus and PPA found in ROI

nalysis, while suggesting that the left anterior frontal gyrus, left IT and

recuneus might also play a role in landmark coding that should be ex-

lored in future studies. 

. Discussion 

In this study we identify a neural mechanism that the human brain

ses to encode the spatial significance of landmark objects in an indoor
6 
nvironment. Participants learned a virtual environment outside the

canner, and brain activity in response to the landmark objects was mea-

ured before and after learning. Our results show that learning changed

he neural representation of the landmark objects in the hippocampus

nd right PPA. Specifically, multivoxel BOLD response patterns became

ore distinguishable for objects in different rooms compared to objects

n the same room. This suggests that these regions learned to encode

he objects based on their navigational significance: they encoded the

laces associated with the objects. 

Our results for the human hippocampus agree with previous find-

ngs showing that the hippocampus encodes spatial locations in both

odents (O’Keefe and Nadel, 1978; Moser et al., 2008 ) and humans

 Burgess et al., 2002 ). For example, previous fMRI studies have found
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Fig. 6. Results of the searchlight analysis in FSL MNI152 space across partici- 

pants (n = 18). Object location coding could be found in a) left inferior frontal 

gyrus (IFG), left inferotemporal (IT) cortex, b) left anterior hippocampus, left 

PPA, c) right PPA, and d) bilateral precuneus cortex. 
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hat the hippocampus exhibits distance-dependent adaptation effect be-

ween buildings on a college campus ( Morgan et al., 2011 ) and distance-

ependent multivoxel pattern similarity for objects encountered within

 virtual city ( Deuker et al., 2016 ; see also Nielson et al., 2015 ). The

tudy by Deuker and colleagues is particularly relevant, because they

canned their participants both before and after environmental learning,

nd thus they were able to show that the object representations within

he hippocampus changed as a result of learning. For indoor spaces, a

ecent study ( Kim and Maguire, 2018 ) examined fMRI adaptation ef-

ects while participants viewed movies showing navigation to paintings

ocated in fixed positions in a multi-room building and performed a spa-

ial memory task on these paintings. They found that the left anterior

ippocampus showed fMRI adaptation related to repetition of similar

ocations across rooms on successive trials, while posterior hippocam-

us, PPA, and RSC showed adaptation related to repetition of locations

n the same room. Our results are consonant with their findings in that

he hippocampus and PPA encode spatial locations, but go beyond them

y showing location-related activation patterns that are elicited by the

andmark objects themselves, even when participants do not perform a

patial memory task. 

Notably, all these previous studies used a rich environment in which

any different geometric features and objects could be used for orien-

ation. In contrast, we used a sparse environment in which the objects

ere, by design, the essential navigational cues. Thus, we can be confi-

ent that the objects we examined were used as landmarks. Our study

s therefore the first to demonstrate conclusively that the spatial rep-

esentation of learned landmark objects in the hippocampus and right

PA (and possibly also right RSC) automatically arises by exposure to

he objects, thus suggesting that associations between the objects and

heir spatial locations had been formed by training. 

We also observed landmark effects in scene regions. Like the hip-

ocampus, right PPA exhibited a change in object representations, such

hat the room that each object was located in could be decoded from

MRI response patterns after learning. Right RSC also exhibited a room

ffect after learning, though in this region the change from pre to post

earning was not significant. The PPA and RSC have been previously

hown to exhibit enhanced responses to objects with qualities that would
7 
ake them more suitable as landmarks ( Troiani et al., 2014 ), such as

eing large in size ( Konkle and Oliva, 2012 ), fixed in space ( Auger et al.,

015 , 2012 ; Auger and Maguire, 2013 ), or associated with navigation-

lly relevant locations ( Janzen and van Turennout, 2004 ; Schinazi and

pstein, 2010 ). Furthermore, parahippocampal cortex has been shown

o respond more strongly when participants navigate through environ-

ents with landmarks compared to environments that do not contain

andmarks ( Maguire et al, 1998 ). These findings indicate that PPA and

SC respond to objects that can potentially be associated with specific

ocations (or headings), but they did not actually demonstrate the ex-

stence of an object-spatial association, as we do here. Previous studies

ave also shown that multivoxel activation patterns in these regions

along with OPA) generalize across exterior and interior views of the

ame building, suggesting that they code either landmark identity or

andmark location ( Marchette et al., 2015 ). The current results cannot

e explained in terms of coding of landmark identity, because the land-

arks in the same room were distinct objects with different visual and

hape features that were never seen at the same time. Thus, we conclude

hat right PPA (and possibly also right RSC) represents the location as-

ociated with the landmark. 

We did not observe any effect on encoding spatial significance of

andmark objects in OPA. Previous work has primarily implicated OPA

n the encoding of the geometric structure of local spaces ( Epstein and

aker, 2019 ). For example, Kamps et al. (2016) demonstrated that OPA

ncoded the boundaries of local spaces, and Julian et al. (2016) found

hat processing of these boundaries was interrupted by inhibitory

ranscranial magnetic stimulation to OPA. Using multivoxel pattern

nalysis, Bonner and Epstein (2017) reported that OPA also partici-

ated in the coding of navigational affordances, which was defined

s the pattern of pathways one could take in a local space, while

enriksson et al. (2019) found that it represented the layout of bound-

ng surfaces. These findings suggest that OPA is more involved in the

ncoding of the internal spatial structure of scenes rather than the en-

oding of the spatial significance of landmark objects. 

Our findings with landmarks are reminiscent of previous work show-

ng that scene regions encode associations between different views ob-

ervable from the same location. Robertson et al. (2016) showed that

ifferent scene views at the same location learned from a continuous

anoramic experience elicited similar multivoxel patterns in RSC and

PA, while Berens et al. (2021) found that representations of scene

iews from the same location became similar in PPA and RSC after

earning. Furthermore, Berens et al. (2021) found that this location rep-

esentation in RSC was only present when participants could explicitly

dentify two scenes as views from the same location. In contrast, such

 representation in PPA was independent of participants’ explicit mem-

ry. Their results, together with our findings, indicate that the location

oding for scenes and landmark objects might have shared neural mech-

nisms in PPA and RSC. Our results are also consistent with the asso-

iative processing function of scene regions proposed by Aminoff et al.

2007 ; also see Aminoff and Tarr, 2015 ), insofar as we find evidence

hat the PPA encodes an association between landmark objects and their

patial contexts (rooms). 

What is the nature of the landmark location codes in the hippocam-

us and scene regions? There are two possibilities. First, these regions

ight support a “spatial ” map of the environment, in which distances

nd directions between locations are represented. Second, they may sim-

ly represent locations as distinct “places ”, without encoding any spa-

ial relationships between them. Previous work has found evidence for

oding of spatial relationships between locations in the hippocampus

 Deuker et al., 2016 ; Howard et al., 2014 ; Morgan et al., 2011 ) and

SC ( Marchette et al., 2014 ), but not PPA ( Persichetti and Dilks, 2019 ;

lthough see Sulpizio et al., 2014 ). More broadly, previous work has

mplicated hippocampus and RSC in the mediation of the spatial as-

ects of a “cognitive map ” whereas PPA is implicated in the recognition

f individual places or contexts within the map ( Epstein et al., 2017 ;

ulian et al., 2018 ). To see if we observe a similar division of labor in



L. Sun, S.M. Frank, R.A. Epstein et al. NeuroImage 236 (2021) 118081 

t  

l  

f  

i  

o  

d  

t  

t  

a  

h  

m  

i  

f  

b

 

p  

s  

w  

j  

h  

K  

o  

a  

h  

l  

n  

p  

f

 

t  

s  

r  

i  

d  

m  

t  

i  

m  

t  

a  

l

 

p  

e  

w  

i  

s  

n  

t  

t  

2

 

s  

r  

A  

m  

w  

t  

c  

o  

a

 

b  

b  

t  

h  

t  

F  

o  

h  

f  

h  

a  

l  

r  

i  

p  

o  

n

 

o  

i  

s  

c

D

 

n

 

c

D

C

 

t  

i  

-  

e  

S

A

 

P

S

 

t

R

A  

A  

A  

A  

 

A  

A  

B  

 

B  
he current data, we examined the confusion matrix of the 4-way object

ocation classification. Our hypothesis was that if the representation we

ound was based on a spatial map or any representation with distance

nformation, then there should be more classification errors between

bjects in neighboring rooms compared to errors between objects in

istant (diagonal) rooms, since the former objects were spatially closer

han the latter. We used the mean difference between the counts of these

wo errors as the measure and did the same bootstrapping test as in the

ccuracy analysis. We did not find any significant effect in either the

ippocampus or the PPA (all p s > .05; Fig. S2). These null results are

ost consistent with a categorical spatial code in both regions, but we

nterpret them with caution, because our environment was suboptimal

or examining map-like representations due to the minimal variation in

etween-room distances. 

The landmark location codes found in the current study were inde-

endent of the representation of object shape. We could decode object

hapes individually in LOC and OPA both before and after training, but

e observed no significant decoding in the two regions when the ob-

ects were classified according to their locations. LOC is a major cortical

ub for object shape processing ( Grill-Spector et al., 2001 ; Konen and

astner, 2008 ; Malach et al., 1995 ), and a previous study found that

bject category (which relates to shape) could be decoded in both LOC

nd OPA ( Julian et al., 2017 ). An open question for future research is

ow these object identity codes in LOC and OPA get bound to object

ocation codes in hippocampus and OPA. In addition, there was a sig-

ificant increase of object classification accuracy from pre learning to

ost learning in LOC. We suspect that this is due to increased object

amiliarity after learning. 

In our study, among 18 participants, two participants needed 4–5

raining sessions in order to learn the space. In a correlation analy-

is, we found that the number of training sessions was positively cor-

elated with the increase of the object location classification accuracy

n right PPA across participants ( r = 0.55, p = 0.021), though this result

id not survive FDR correction. Nevertheless, this result indicates that

ore extensive training might have reinforced the spatial representa-

ions observed in right PPA. Of note, we have very limited variability

n our sample (only 2 participants took 4–5 training sessions, whereas

ost participants finished within two training sessions). Therefore, fu-

ure studies should use a larger sample size to investigate the possible

ssociation between the amount of training and the magnitude of the

earning effect. 

Furthermore, there is a possibility that the group-level result was

rimarily driven by the location effect observed in the participants with

xtensive training. To test this, the same object location classification

as conducted based on the participants who needed only 2–3 train-

ng sessions, excluding the two participants who required 4–5 training

essions. We were able to replicate our findings (Fig. S1) with less sig-

ificant results (no ROI survived FDR correction), presumably due to

he reduced sample size ( n = 16) with reduced statistical power. In sum,

he effects we observed stood even if we only included participants with

–3 sessions of training. 

There were some limitations in the current study. In our de-

ign, all objects were landmarks fixed in space. There was no di-

ect comparison between landmark objects and non-landmark objects.

uger et al. (2015) observed increased activity in scene regions for per-

anent landmark objects but not for transient non-landmark objects

hile participants were learning the layout of an environment. In fu-

ure studies, it would be informative to test whether the representational

hanges we observed only happened for landmark objects, but not for

bjects that cannot be landmarks because they are not reliably associ-

ted with a specific location. 

In addition, some effects we observed showed discrepancy between

ilateral ROI results and unilateral ROI results. On one hand, this could

e because some effects might only involve one hemisphere but not

he other (e.g. rPPA). On the other hand, it could be caused by the

igh noise level. Decoding accuracy in bilateral ROIs might be facili-
8 
ated because of the larger number of voxels relative to unilateral ROIs.

or example, in the object location classification, significant decoding

f locations was found in the bilateral hippocampus and left anterior

ippocampus. However, the pattern of decoding accuracies across the

our subregions of the hippocampus ( Fig. 5 c), including left anterior

ippocampus, left posterior hippocampus, right anterior hippocampus,

nd right posterior hippocampus, showed a trend of significant post-

earning decoding (27.3%) as well as an accuracy increase ( + 3.8%) in

ight posterior hippocampus. This indicated the possibility that location

nformation might be coded in both left anterior hippocampus and right

osterior hippocampus, which contributed to the significant decoding

f locations in the bilateral hippocampus. However, future studies are

eeded to test this possibility directly. 

In summary, our results reveal a neural representation of landmark

bjects in the hippocampus and right PPA based on their locations in

ndoor spaces. Future studies are needed to investigate the nature of

uch location representations in different brain regions and how they

oordinate with each other during navigation. 
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