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Winding models vs. Core models I
= Linear, well known = Nonlinear material

material properties. properties, known only
= Behavior is a solution to through measurements.

Maxwell’s equations. m Models are behavioral,
= Numerical, analytical, or based on measurements.

mixed solutions. = Physics-based micromagnetic

models exist, but can’t

= Can be accurately address ferrite loss yet.

approximated by linear
circuit networks, given
enough RLC elements
(usually just RL).

m Circuit models based on RLC
elements only can’t capture
nonlinear behavior.

THAYER SCHOOL OF
J 'ﬁ ENGINEERING
power.thayer.dartmouth.edu ¥ AT DARTMOUTH 2




Winding models

Physical Design
Geometry & Materials

[Jicev] THAYER SCHOOL OF
ENGINEERING
¥ AT DARTMOUTH

power.thayer.dartmouth.edu

Winding models

Current
waveforms

Physical Design
Geometry & Materials

THAYER SCHOOL OF

’ﬁ ENGINEERING
power.thayer.dartmouth.edu <% AT DARTMOUTH

]
4




Winding models
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m Winding ac resistances?
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Loss calculated from

currents // Primary E secondary.

s Conventional, incorrect, model for
transformer winding loss
(assume sine waves for now).

= Problem: Loss varies drastically

depending on relative
phase/polarity.

winding

s Factor of 4 error in this case.
= Correct model options:

= R, and R, that are only for
specific phase relationship.

= Resistance matrix.
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Winding models

Current
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= Frequency-dependent resistance matrix R(f).
m Captures interactions between windings.
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See poster D09 on
Thursday for how-to on
this by Benedict Foo.
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Predictions from physical structure

1-D fields 2-D or 3-D fields
Rectangular Analytical Numerical
conductors (Finite Element, PEEC, etc.)

(e.g. foil and PCB)

Round-wire Simulation-tuned Simulation-tuned physical
conductors physical model model + dc field simulation
(including litz)

9
Winding models:
1D, rectangular conductors
Physical Design
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Round conductor:
Textbook problem A

A

O

= Cylinder subjected to uniform field

= Dowell’s model is a crude approximation.

THAYER SCHOOL OF
/ 7; ENGINEERING
power.thayer.dartmouth.edu \N<Z4Y AT DARTMOUTH 11

Textbook solution I/

m Exact solution,
described by Bessel
functions.

= Use for winding loss
analysis pioneered by
Ferreira.
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Not a valid solution! ¥ Real Solution (FEA)




Simulation Results
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Y Dowell

Bessel.

simple correction.
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Real behavior is between Dowell and

Sometimes closer to Dowell.
Identical in low-frequency range with
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Xi Nan’s model

= Weighted average of
Dowell-like and
Bessel-like behavior:
“Simulation tuned
physical model”

= Fits experimental
results better than
Dowell or Bessel.

= Can be applied to 2D
or 3D field
configurations ...
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Dowell method

sol ° Experimental Data

Our model

—— Bessel function method
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Full winding loss model: 2-D, full

frequency range, multi-winding interactions

= Hybridized Nan’s method

(Zimmanck, 2010)

I —=I

M

Homogenization with
complex permeability
(Nan 2009, Meeker, 2012)

Fourier anal\,r5|s Fourier analysis
DC_Ei jon -
L
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an’s Proximity Loss Factor
7
e ]] Rislf) Rl I\, = Winding Loss Available in
[ /\f] Real) Rl FEMM
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Winding models 7/
~
Round wire/2D: Current
“Hybridized Nan’s method” waveforms
- 4
-
Physical Desgn Loss
Geometry & Materials
A\
M2SPICE
(MIT)
Electrical Circuit model
Measurements for simulation
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Linear RL networks for
winding models A

= Three standard networks topologies that provide:

= Rincreases with frequency.

= L decreases with frequency.
= Can obtain identical behavior with any of the three.
= Can use any one to match measured behavior.

-
Foster

}j‘“% % Cauer 1
RIS ? ? ? e

Core models 7/
Flux
waveforms
Physics
& Loss
Loss
calculation

Loss
mM
Electrical Dynamic model
T e Circuit simulation
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Loss Calculation Models I

= Steinmetz equation:

= Sinusoidal waveforms
only

= Various types of
modified/generalized/etc.
Steinmetz equations.

= Extend to non-sinusoidal
waveformes.

= Most common:
improved Generalized
Steinmetz Equation
(iGSE).
= Loss Map/Composite

WaVEform MethOd' THAYER SCHOOL OF
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Loss Calculation Models I/
m Steinmetz equation: Comments:
= Sinusoidal waveforms = iGSE vs. Loss Map:
only = Same predictions if you use the same
data.

= Various types of
modified/generalized/etc.
Steinmetz equations.

= iGSE: sinusoidal data.

= Loss Map
= Loss map database can include dc bias
= Extend to non-sinusoidal effects.

waveforms. = iGSE can do any wave shape, whereas

« Most common: Loss Map is for rectangular only.

improved Generalized

Steinmetz Equation
(iGSE). = Weakness of most of these: “Dead time”

affects loss in practice but not in the
model. “Relaxation effects.”

m Barg 2017 improves iGSE for extreme
duty cycles.

'’

= Loss Map/Composite
Waveform Method. —
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Core simulation models A

= Need to include nonlinearity.

s Example: Cauer 1 network to model saturation behavior
and frequency-dependent permeability in nanocrystalline

tape-wound cores.

: %E/%E/%W/% f/%f/%ﬁ/

= Successfully matched pulse behavior in high-amplitude
operation (Sullivan and Muetze, IAS 2007)

= Did not examine loss behavior.
= Open question: what model structures capture dynamic
nonlinear behavior correctly?
ENGINEERING
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Conclusions I

= Winding loss:

= Complex but feasible to model accurately.
For 2 or more windings, need resistance matrix.
1D rectangular conductors: analytical solutions.
2D rectangular conductors: numerical simulations.

1D or 2D round wire: Simulation-tuned physical
models are better than Dowell or Bessel.

m Core loss
= Nonlinear and can only be found experimentally.
= Open questions on data needed and models.
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