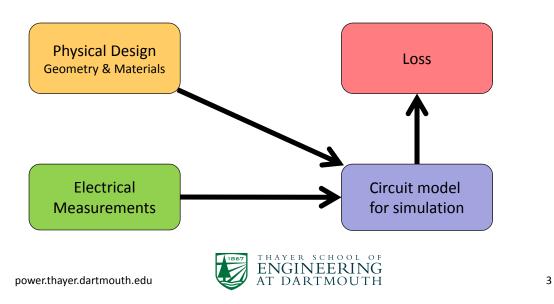
Overview of Modelling Methods

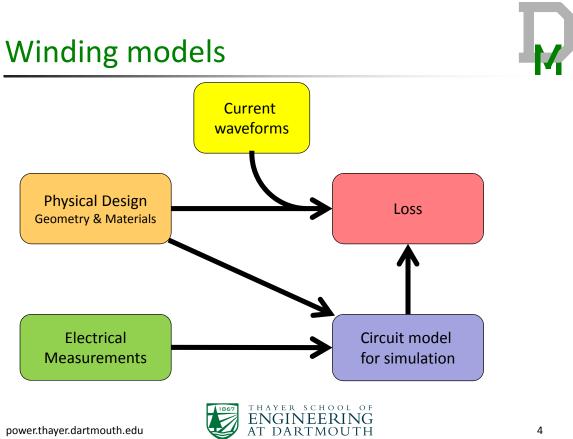
Prof. Charles R. Sullivan

chrs@dartmouth.edu

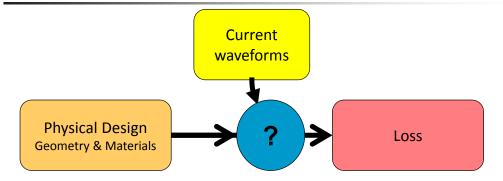
http://power.engineering.dartmouth.edu

Winding models vs. Core models


1

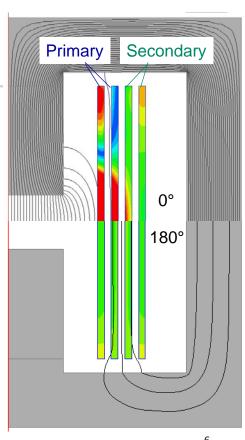

- Linear, well known material properties.
- Behavior is a solution to Maxwell's equations.
- Numerical, analytical, or mixed solutions.
- Can be accurately approximated by linear circuit networks, given enough RLC elements (usually just RL).
- Nonlinear material properties, known only through measurements.
- Models are behavioral, based on measurements.
 - Physics-based micromagnetic models exist, but can't address ferrite loss yet.
- Circuit models based on RLC elements only can't capture nonlinear behavior.

Winding models



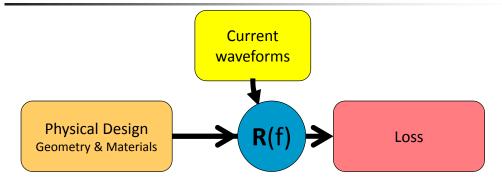
Winding models

Winding ac resistances?


power.thayer.dartmouth.edu

5

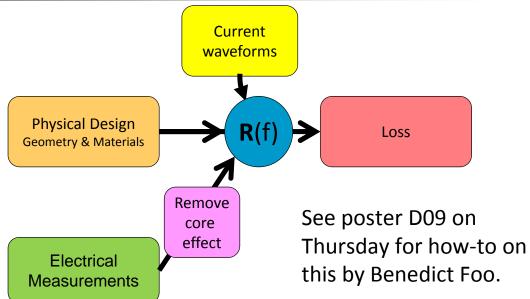
Loss calculated from currents


- Conventional, incorrect, model for transformer winding loss (assume sine waves for now).
 - $P_{\text{winding}} = I_1^2 R_1 + I_2^2 R_2$
 - Problem: Loss varies drastically depending on relative phase/polarity.
 - Factor of 4 error in this case.
- Correct model options:
 - R₁ and R₂ that are only for specific phase relationship.
 - Resistance matrix.

power.thayer.dartmouth.edu

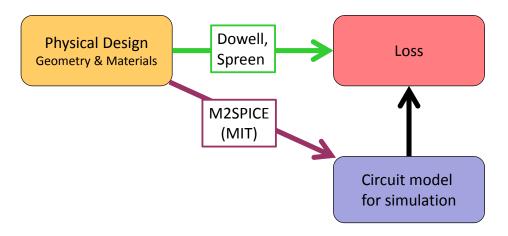
Winding models

- Winding ac resistances?
- Frequency-dependent resistance matrix R(f).
- Captures interactions between windings.


power.thayer.dartmouth.edu

7

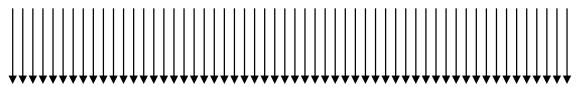
Winding models



	1-D fields	2-D or 3-D fields
Rectangular conductors (e.g. foil and PCB)	Analytical	Numerical (Finite Element, PEEC, etc.)
Round-wire conductors (including litz)	Simulation-tuned physical model	Simulation-tuned physical model + dc field simulation

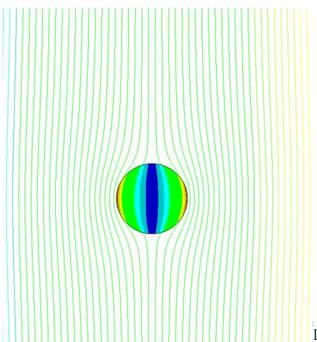
9

Winding models: 1D, rectangular conductors



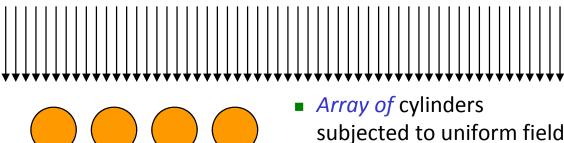
Round conductor: Textbook problem

- Cylinder subjected to uniform field
- Dowell's model is a crude approximation.


power.thayer.dartmouth.edu

11

Textbook solution

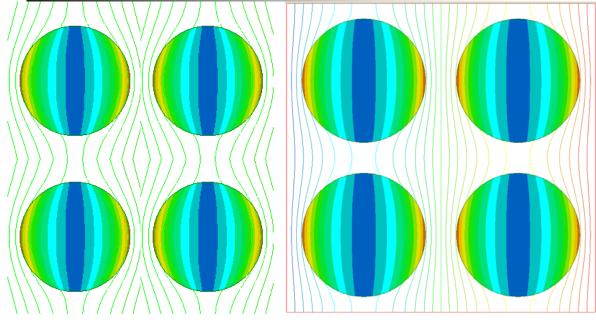


- Exact solution, described by Bessel functions.
- Use for winding loss analysis pioneered by Ferreira.

INEERING ARTMOUTH

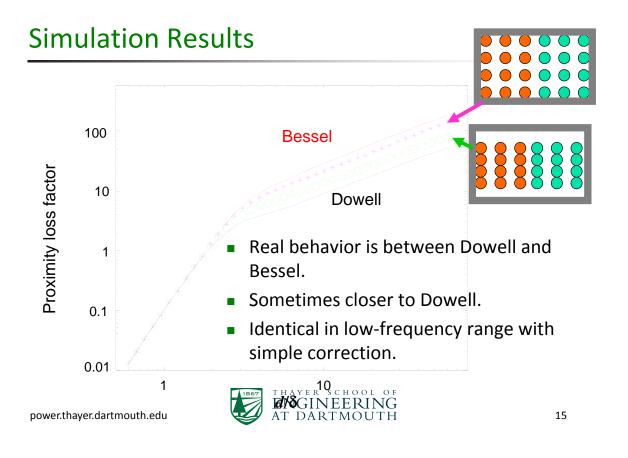
Actual problem

THAYER SCHOOL OF ENGINEERING

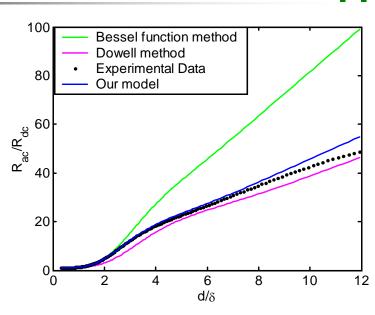

power.thayer.dartmouth.edu

subjected to uniform field

13


Using the Bessel solution for the real problem

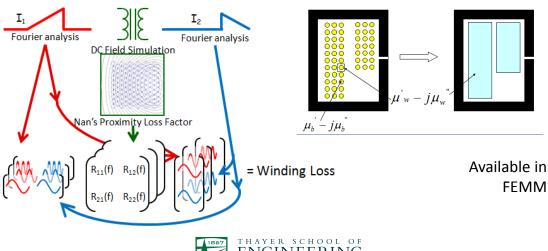
Not a valid solution!


Real Solution (FEA)

Xi Nan's model

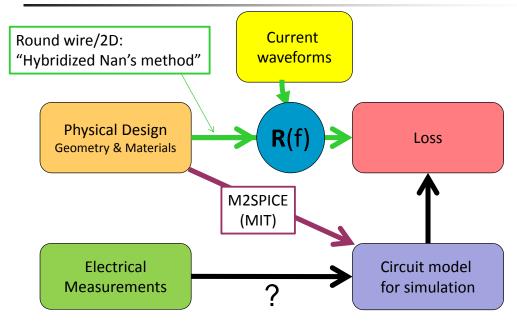
N

- Weighted average of Dowell-like and Bessel-like behavior: "Simulation tuned physical model"
- Fits experimental results better than Dowell or Bessel.
- Can be applied to 2D or 3D field configurations ...



Full winding loss model: 2-D, full frequency range, multi-winding interactions

- Hybridized Nan's method (Zimmanck, 2010)
- Homogenization with complex permeability (Nan 2009, Meeker, 2012)


power.thayer.dartmouth.edu

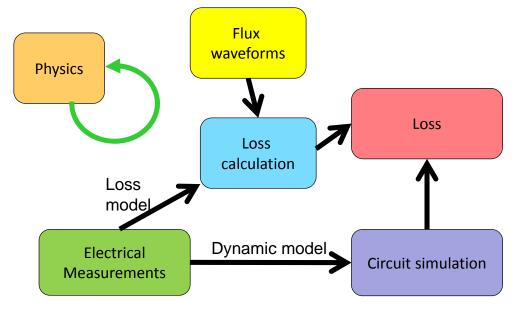
THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

17



ENGINEERING AT DARTMOUTH

Linear RL networks for winding models



- Three standard networks topologies that provide:
 - R increases with frequency.
 - L decreases with frequency.
- Can obtain identical behavior with any of the three.
- Can use any one to match measured behavior.

Core models

Loss Calculation Models

- Steinmetz equation:
 - Sinusoidal waveforms only
- Various types of modified/generalized/etc.
 Steinmetz equations.
 - Extend to non-sinusoidal waveforms.
 - Most common: improved Generalized Steinmetz Equation (iGSE).
- Loss Map/Composite Waveform Method.

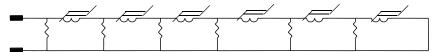
power.thayer.dartmouth.edu

21

Loss Calculation Models

- Steinmetz equation:
 - Sinusoidal waveforms only
- Various types of modified/generalized/etc.
 Steinmetz equations.
 - Extend to non-sinusoidal waveforms.
 - Most common: improved Generalized Steinmetz Equation (iGSE).
- Loss Map/Composite
 Waveform Method.

Comments:


- iGSE vs. Loss Map:
 - Same predictions if you use the same data.
 - iGSE: sinusoidal data.
 - Loss Map
 - Loss map database can include dc bias effects.
 - iGSE can do any wave shape, whereas Loss Map is for rectangular only.
- Barg 2017 improves iGSE for extreme duty cycles.
- Weakness of most of these: "Dead time" affects loss in practice but not in the model. "Relaxation effects."

Core simulation models

- Need to include nonlinearity.
- **Example:** Cauer 1 network to model saturation behavior and frequency-dependent permeability in nanocrystalline tape-wound cores.

- Successfully matched pulse behavior in high-amplitude operation (Sullivan and Muetze, IAS 2007)
- Did not examine loss behavior.
- Open question: what model structures capture dynamic nonlinear behavior correctly?

power.thayer.dartmouth.edu

23

Conclusions

- Winding loss:
 - Complex but feasible to model accurately.
 - For 2 or more windings, need resistance matrix.
 - 1D rectangular conductors: analytical solutions.
 - 2D rectangular conductors: numerical simulations.
 - 1D or 2D round wire: Simulation-tuned physical models are better than Dowell or Bessel.
- Core loss
 - Nonlinear and can only be found experimentally.
 - Open questions on data needed and models.

References

- Sobhi Barg, K. Ammous, H. Mejbri, and A. Ammous, "An Improved Empirical Formulation for Magnetic Core Losses Estimation Under Nonsinusoidal Induction," IEEE Trans. Pow. Electr. 32(3), March 2017
- Benedict Foo, A. Stein, C. Sullivan, "A Step-by-Step Guide to Extracting Winding Resistance from an Impedance Measurement", APEC 2017, Poster session D09, paper 1925
- D. R. Zimmanck and C. R. Sullivan, "Efficient calculation of winding loss resistance matrices for magnetic components," in *IEEE Workshop on Control and Modeling for Pow. Electr.*, 2010.
- M. Chen, M. Araghchini, K. K. Afridi, J. H. Lang, C. R. Sullivan, and D. J. Perreault, "A systematic approach to modeling impedances and current distribution in planar magnetics," *IEEE Trans. on Pow. Electr.*, 31(1), pp. 560–580, Jan 2016.
- K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," in *IEEE Workshop on Computers in Pow. Electr.*, 2002.
- C. R. Sullivan and R. Y. Zhang, "Analytical model for effects of twisting on litz-wire losses," in *IEEE Workshop on Control and Modeling for Pow. Electr. (COMPEL)*, 2014.
- A. F. Hoke and C. R. Sullivan, "An Improved Two-Dimensional Numerical Modeling Method for E-Core Transformers", in *IEEE App. Pow. Electr. Conf.*, 2002.
- Xi Nan and C. R. Sullivan, "Simplified high-accuracy calculation of eddy-current loss in round-wire windings," in *IEEE Pow. Electr. Spec. Conf*, 2004.
- C. R. Sullivan, "Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two- or three-dimensional field geometry," *IEEE Trans. on Pow. Electr.*, 16(1), 2001.
- D. C. Meeker, "An improved continuum skin and proximity effect model for hexagonally packed wires," *Journal of Computational and App. Mathematics*, vol. 236, no. 18, pp. 4635–4644, 2012.
- Spreen, J.H.; , "Electrical terminal representation of conductor loss in transformers," Power Electronics, IEEE Transactions on , vol.5, no.4, pp.424-429, Oct 1990. doi: 10.1109/63.60685.
- Sullivan, C. R., & Muetze, A. (2010). Simulation model of common-mode chokes for high-power applications. IEEE Transactions on Industry Applications, 46(2), 884-891.