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Core loss testing:
difficult and important

= Nonlinear behavior requires:
= Large-signal testing
= Testing with bias
= Understanding or testing the influence of the
waveform shape.

= High Q (low-loss) measurements are difficult.

= Especially at high frequency.
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Types of core loss measurements

= Calorimetric measurements
= Can be slow
= Difficult, but possible, to do accurately

= Sometimes retain accuracy where electrical
measurements lose accuracy

= Independent check on electrical measurements
m Electrical measurements

= Conventional four-wire

= Resonant methods
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Calorimetric methods

= Methods:
= Steady-state temperature rise
= dT/dt

= Heat flux sensor: AT across a thermal resistor: equivalent of
a current sense resistor.

= Liquid coolant: flow and temperature rise
m [ssues:

= Dissipation in winding is included

= Isolation: insulation and/or guarding

= Lead wires
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Electrical measurements

= Conventional two-winding measurement

R1 R2

M

u Theory: isense

Instrumentation
p(t) = v(t)-i(t)

= Voltage drop on R1 doesn’t appear in measurement.

= No current, and so no voltage drop, on
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Electrical measurements:
Source options

= Sinusoidal oscillator N

with amplifier. A .
= Square-wave or other . %

M

oscillator with amplifier. L

sssss

= Rise time and output impedance limitations.

= Power converter, e.g. full bridge.
= Fast edges.
= Stiff voltage source.

= Example: Dartmouth PSMA core loss studies:

= Programmable pulse generator.

= Digital control of power supply bus voltage.

= Automatic sequence of waveforms.
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Instrumentation
p(t) = v(t)-i(t)




Electrical measurements:

Instrumentation OpthhS I‘,l
m Current sensing: " &2
] OptiOnS: H : eeeee Instrumentation
o - p(t) = v(t)i(t)
= Shunt Y
= Current transformer igense

= Rogowski coil
= Wideband DC current probe.

= Critical for any of these: bandwidth and delay (phase shift)
s Power instrumentation: phase shift also critical
= Power meter

= Oscilloscope
= On board power calculation.
= Data acquisition; loss calculation off line.
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Effect of phase error and delay I/

m Fractional errorin loss = Q Ag
where Q is quality factor of the core and Ag is the
phase error in radians.

= Example: Q = 25, 1° phase error - 44% error!
= Uncompensated delay translates to phase error.
= 1 nsdelayis 0.36° at 1 MHz; 3.6° at 10 MHz;
= Double jeopardy at HF (3~30 MHz frequencies:
= Small delay becomes intolerable phase shift.
= Low-permeability materials = high Q.
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Resonant methods I

= Virginia Tech resonant-corrected two-winding
measurements.

= Reduces sensitivity to phase errors by cancelling
reactive impedance and reducing effective Q.

s MIT/Dartmouth direct Q measurement.

= Eliminates sensitivity to phase errors—measure
only voltage amplitudes, ignoring phase
information.

= Papers provide detailed error analysis for each.
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Virginia Tech Resonant Methods 7/

= V. is used to cancel reactive component of V,
= This version (T. Pow. Elr. April 2017):

= Doesn’t R, L,

require tuning ——W—"" l

cap value. ¥
= Cancellation performed RS Ln

off line. 1
= Inductive

version for

o \4 i, C=
non-sinusoidal - R+ IR CT
O-WU Y
waveforms. Ry
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MIT resonant method I

Measurement Inductor
A
-~ =

] : L Hew -Hoome
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Trans. Line I e )
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1 I s
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I T

RFPA “— Low Q Filter i Measurement Circuit

s Must be tuned to resonant peak for each measurement
frequency.

= Need only amplitudes: Q= |Vout|/|Vin|
m Measurement include winding loss: model it and subtract.
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Other issues in electrical
measurements I

= Winding capacitance
= Current in winding capacitance is not creating H field.
= Mutual resistance

= High-frequency winding loss includes mutual resistance
terms (discussed in Modelling this afternoon).

= Mutual resistance appears as part of measured core loss.
= Windings can be designed for low mutual resistance.

m Temperature control: test temperature + rise during testing.
= Pulse tests, mineral-oil bath, forced convection.
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Types of core loss measurements A

m Calorimetric measurements

m Electrical measurements
= Conventional four-wire
= Instrumentation options
= Source options
= Resonant methods
= MIT
= Virginia Tech
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