

High Q Self-Resonant Structures for Wireless Power Transfer

Aaron L. F. Stein Phyo Aung Kyaw Charles R. Sullivan

http://power.engineering.dartmouth.edu

1

Motivation

- Range and efficiency of wireless power transfer (WPT)
 - Impacts user experience
 - Limits the number of applications
- Theoretical maximum efficiency is $\eta_{max} = \frac{(Qk)^2}{\left(1+\sqrt{1+(Qk)^2}\right)^2}$.
 - The magnetic coupling factor (k) decreases at long range
 - The quality factor (Q) of the resonant coils is a key metric for increasing range and efficiency.
- Increase the range and efficiency of WPT by increasing the quality factor of the resonant coils
 - Without increasing the size of the coils

power.thayer.dartmouth.edu

Limitations of conventional wireless coils

- Dominant loss is typically in the conductor
- Solid magnet wire:
 - Skin effect → most of conductor is not utilized
- Litz wire:
 - Twisting forces equal current sharing \rightarrow good conductor utilization
 - Difficult to terminate → increased loss
 - Proximity effect \rightarrow severe losses if strand diameter (d_s) is not very small
 - Strand diameters $< 2\delta$ is not an adequate design rule
 - AC resistance factor is given by* $\frac{R_{ac}}{R_{dc}} = 1 + \frac{(\pi \, n \, N)^2}{192\delta^4 b^2} d_s^6$
 - Small strand diameters are expensive and are limited to ~32 μm (48 AWG)

*Sullivan, Charles R., and Richard Y. Zhang. "Simplified design method for litz wire." Applied Power Electronics Conference and Exposition (APEC), IEEE, 2014.

3

Thin foil layers

- Easy to get thickness << skin depth
 - Commercially available
 - Inexpensive
 - Freestanding foil down to ~ 6 μm
- Thin layers have high dc resistance need many in parallel.

handi foil ALUMINUM FOIL

Equal current sharing through capacitive ballasting

- Use capacitance between layers to accomplish two things:
 - Force equal current sharing between layers
 - Provide resonant capacitance

How to implement these concepts?

power.thayer.dartmouth.edu

5

Self-resonant multi-layer structure*

ENGINEERING AT DARTMOUTH * Patent Pending

6

power. thay er. dartmouth. edu

Operation principle – single section

Each section:

- Inductive current loop
- Capacitive connection between foil layers through dielectric

power.thayer.dartmouth.edu

Operation principle – many sections

- Strong mutual coupling between all layers.
 - Each section capacitance is coupled to form a parallel LC resonator
 - Coupled section capacitance forces equal current sharing in each layer
 - Integrated capacitance eliminates high current terminations

power.thayer.dartmouth.edu

Self-resonant multi-layer structure*

- Benefits similar to litz wire
 - Good conductor utilization due to equal current sharing between many thin layers
- Overcomes issues associated with litz wire
 - Thin foil layers mitigate loss due to proximity effect
 - Integrated capacitance eliminates high-loss terminations

* Patent Pending

power.thayer.dartmouth.edu

9

The challenge

- High-Q \rightarrow thin foil layers (5-15 µm) which are difficult to handle
 - 1. Copper laminated low-loss substrates
 - Low-loss relative to FR4/polyimide but not PTFE
 - Available materials are expensive
 - 2. Copper laminated high-loss PCB substrates (FR4/polyimide)
 - Available materials are inexpensive
 - High-loss makes this method not feasible
- Contribution of this paper: Develop a structure that incorporates the high-loss substrate into the self-resonant structure in order to handle thin foil layers without adversely impacting the Q.

power.thayer.dartmouth.edu

Modified self-resonant structure

power. thay er. dartmouth. edu

11

Modified self-resonant structure

- The capacitance in the substrate C_{sub} is not excited during resonance
- Thickness, dissipation factor, and dielectric constant of substrate do not impact the resonance
- Therefore we can use a high-loss substrate to support thin foil layers without impacting Q

ENG AT D

power.thayer.dartmouth.edu

Loss modeling

- Loss models are used to create a design space (details in paper)
 - The winding resistance

$$R_{wind} = \frac{R_{LF}}{m} F_r$$
 ac resistance factor

ESR modeling dielectric loss

$$R_{dieletric} = \frac{2D_d}{mC_{sh} \omega}$$
 dielectric dissipation factor

ESR modeling core loss

$$R_{core} = \mathbb{R}(j\omega L^*)$$
 , where $L^* = \frac{1}{\mathcal{R}_c^* + \mathcal{R}_a}$ complex core reluctance

power.thayer.dartmouth.edu

13

Prototype design space

- 6.6 cm pot core made from Fair-Rite 67 material
- 48 sections
- 6 μm copper*
- 25 μm polyimide*
- 25 μm PTFE dielectric*

6.78 MHz Structure Design Space

^{*} Selected based on availability and ease of handling

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

power.thayer.dartmouth.edu

Prototype

power.thayer.dartmouth.edu

15

Experimental data

- Q = 1177
- Diameter (D) = 6.6 cm
- $Q_d = \frac{Q}{D} = 178 \text{ cm}^{-1}$
- Q_d is > 6x larger than that of litz designs in the literature
- Matches within 15% of theory.

power.thayer.dartmouth.edu

Wireless power transfer efficiency versus distance

- Modified Self-Resonant Structure
 - Experimental Q
 - k from FEA of magnetic core
- Baseline for comparison
 - State-of-the-art Q from literature
 - Same magnetic core

power.thayer.dartmouth.edu

17

Wireless power transfer efficiency versus distance

- Experimentally validated wireless power transfer between two modified selfresonant structures
- 2x range with $\eta > 94\%$
- η > 80% at 7.5 cm
- η > 70% at 9 cm

power.thayer.dartmouth.edu

Performance comparison

New Structure (η%)	94%	65%	25%
State-of-the-art (η%)	67%	11%	2%

power.thayer.dartmouth.edu

19

Conclusion

- Increase the range and efficiency of WPT by decreasing the energy dissipated in the resonant coils
- The self-resonant structure accomplishes this, but the thin foil layers are difficult to handle
- Modified self-resonant structure
 - Allows thin foil layers to be laminated on high-loss but low-cost substrates
 - High-loss substrates does not contribute to loss
 - Experimental Q is 1177 despite structure diameter of 6.6 cm
 - 6x improvement over state-of-the-art
 - Experimental wireless power transfer setup
 - 2x range with η > 94%
- Multilayer self-resonant structures can also be used for resonant power conversion (paper ID 1669)

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

power.thayer.dartmouth.edu