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@ Saturday workshop summary

= Morning topic: Core loss
= Afternoon topic: Fringing
= My impossible task: Summarize both sessions.
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@ Core loss v

= Behaviors to capture in models, measurements and data sheets.
= Nonlinearity

= Different behavior at different frequencies.
= Effect of complex waveforms.
= Impact of physical dimensions.

m  Measurement Accuracy Issues (Stefan Ehrlich, Fraunhofer Institute)
= Precision needed and how to achieve it.
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@ Nonlinearity and frequency dependence "M
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@ How to capture nonlinear frequency

dependent loss data? M
= Just collect the data and interpolate.
= Better curve fits.
= Example: P = k,f %-BP + k,-f V-BS
= Dynamic models that inherently have the right dependence on
fand B.
= Example of a first attempt at this from Ray Ridley—work in progress.
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Issue Implication
DC bias effect | Data collection needed des at URL below
— glides S
Variety of Options include Last year'S talk—s
waveforms * Extrapolation from limited data (e.g., iGSE method)

* Comprehensive “loss map” data collection for waveforms of interest.
* e.g., Byron Beddingfield’s DAB tester for “dual slope” waveforms.

Effect of core Effects to study:

size and shape ¢ Skin effect . SSed next
* Wave propagation/dimensional resonance piscy

* Mechanical resonance

e Simple flux crowding as affected by shape
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@ Dimensional Effects

= Straightforward to model and analyze:

= Flux crowding at corners.
= Cross section variation.
= See blog post for more on examples at right.
s Complex, known physics; uncertain parameters:
= Skin effect and wave propagation
= Mechanical vibration: See ref [5]*.
= Poorly understood:
= Higher loss on surfaces than in bulk.

*Slides in on the memory stick are only a placeholder. Find
these, with references, at sites.dartmouth.edu/power-magnetics/

@ Surface losses in MinZn ferrite confirmed M
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A Solid Sample

D. Neumayr, D. Bortis, J. W.
Kolar, ETH Zurich.

= A prototype with NiZn
ferrite does not have this
problem.

Talk Wed. 09:45, .

“A Low-Loss Inductor ....”,
Session T12, Magnetics,
paper 1487, Yang, Hanson,
Perreault and Sullivan.
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@ Dimensional Effects:

plots of |B| in a round centerpost

= Skin effect, affected by
nand o

(permeability and conductivity)
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= Wave propagation
(dimensional resonance) )
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= Typ. g = 10° for MnZn ferrite
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=  Figures from Glenn Skutt’s excellent PhD thesis: ’;High-réiquency Dimensional Effects in
Ferrite-Core Magnetic Devices,” Virginia Tech, 1996.

@ Rough core leg size for these effects M4

MnZn NiZn
1000 1000
Characteristic 100 100 m Skin depth
Length, cm 10 - 10
0.1 0.1 wave
100kHz 1MHz 10 MHz 1MHz 10 MHz

= For low loss, skin effect may be important sooner than shown.
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@ SMA/PSMA/UCC experiments s coee con mm

Drilled MnZn core to install
sense windings.
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@ Dimensional effects: implications 14

= For large area core legs at high frequency:
= Segmented, laminated, or “bundle of sticks” approach.

= Measurement data taken on a different
core size may not be adequate.

= Very rough idea of size and frequency thresholds
= ~1cm at 1 MHz with MnZn ferrite.
= ~1cm at 10 MHz with NiZn ferrite.

il BN
~_ |
= Data on € and p combined with streamlined modeling could ﬁ

avoid the need for loss measurement of every core size.

= Caution: € and p vary with frequency and temperature.
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Afternoon: Fringing

= Changes air-gap reluctance.

= Calculations rarely needed: design
based on reluctance £, not gap length
4, and find the gap experimentally.
= If needed, calculations are in the appendix.
= Extra winding loss.

= Extra core loss in laminated/tape
wound cores: eddy currents.
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Fringing effect on core loss

m Flux crosses perpendicular to laminations,
inducing loss.

= The “out-of-plane flux” (OOPF) causes

excess power 10ss Pyqpp. {

= Only a problem on two sides of a post.

OK flux Bad flux

= Solutions exist: patented shapes and
configurations [9],[10].
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@ Fringing effect on winding loss

m Strong field near the
gap causes increased
eddy-current winding
loss.

m Curved field is bad for
foil windings:
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= Solid winding.

m Current flow is
attracted to gaps.

= Amount of current is
proportional to gap
reluctance.

sites.dartmouth.edu/power-magnetics/

@ One conceptual approach 14
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@Single gap

= Which winding has larger
loss, with the same ac
current in each winding?
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@Single gap

= All current flows near the
gap.

m Longer gap — Current is
spread over a larger area
— lower loss.

m Current with small gap is
spread wider than gap.
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One design approach:

= Spread several gaps evenly:

= Spacing x between gaps.
= Distance x/2 from edge of winding.
= Choose spacing s < x/3.

= Current distribution is not perfect, but “pools”
of current overlap and impact on loss is small.
= For details, see ref. [1]
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Are all equal spacings gaps equal? D

= Current
spreads to
both sides
of gap.

m Position
accordingly:
x/2 on edges.
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Approaching distributed gap

21

Winding shape optimization

= Shape winding configuration to work with
curved gap field.

= Applies to round wire and litz wire, not foil.

= Can actually work better
than a distributed gap!

= Ad-hoc approach common, but
full optimization is available [2,3,4].
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Fringing conclusions

= Current flows near the gaps.
= A wider gap lowers resistance.
= Spacing s > x/3 is a good rule.

= Not all equally spaced gaps are
equal—first gap x/2 from edge.
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Ways forward on core loss: Industry
Magnetic material users Magnetic material suppliers
= Ask suppliers for data. = Data with dc-bias.

= Estimate skin effect for MnZn =
ferrites; consider segmented
core.

= For non-sinusoidal
waveforms: Barg refinement
of iGSE (different parameters

for each segment).
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Data in electronic form.
Data for different core sizes.

Data on resistivity
(and permittivity?).

m Tolerances: min and max loss

Data for square-wave drive.
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@Ways forward on core loss: research ™

= Integration of models for different loss effects.

= Hope: effects considered separate maybe different
aspects of the same effect.

= Comprehensive, accurate, research models.
= Practical, usable models for designers.
= Simple, nonlinear simulation models.
= Linear models can’t match observed behavior.
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Another example 7

= Both gaps are small
enough that it doesn’t
matter much.

= Shorter gap is worse.
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Fringing reluctance calculation

Rfaces = z
p-ﬂo{l+ln2;r€ ]
gap
RC'OI‘JI(ZJ'S = 1
Mokt
where

p = perimeter = 2(w+d)
k=1.23
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