Core Loss Initiative: Technical

Prof. Charles R. Sullivan

chrs@dartmouth.edu

Dartmouth Magnetics and Power Electronics Research Group

sites.dartmouth.edu/power-magnetics/

1

Saturday workshop summary

- Morning topic: Core loss
- Afternoon topic: Fringing
- My impossible task: Summarize both sessions.

Core loss

- Behaviors to capture in models, measurements and data sheets.
 - Nonlinearity
 - Different behavior at different frequencies.
 - Effect of complex waveforms.
 - Impact of physical dimensions.
- Measurement Accuracy Issues (Stefan Ehrlich, Fraunhofer Institute)
 - Precision needed and how to achieve it.

sites.dartmouth.edu/power-magnetics/

3

Nonlinearity and frequency dependence

- Steinmetz model 104 $P = kf^{\alpha} \hat{B}^{\beta} \qquad \stackrel{\text{Pv}}{\text{(kW/m}^3)}$ would mean
 straight, parallel 103
 lines on both plots.
- Linear model would mean $\beta = 2$.
- Behavior is more complex.

10⁴ kW

sites.dartmouth.edu/power-magnetics/

How to capture nonlinear frequency dependent loss data?

- Just collect the data and interpolate.
- Better curve fits.
 - Example: $P = k_1 \cdot f^{\alpha} \cdot B^{\beta} + k_2 \cdot f^{\gamma} \cdot B^{\zeta}$
- Dynamic models that inherently have the right dependence on f and B.
 - Example of a first attempt at this from Ray Ridley—work in progress.

sites.dartmouth.edu/power-magnetics/

5

Omitted in all of the above

Issue	Implication	
DC bias effect	Data collection needed	udes at URL below
Variety of waveforms	Options include • Extrapolation from limited data (e.g., iGSE method) • Comprehensive "loss map" data collection for waveforms of interest. • e.g., Byron Beddingfield's DAB tester for "dual slope" waveforms.	
Effect of core size and shape	 Effects to study: Skin effect Wave propagation/dimensional resonance Mechanical resonance Simple flux crowding as affected by shape 	Discussed next

Dimensional Effects

- Straightforward to model and analyze:
 - Flux crowding at corners.
 - Cross section variation.
 - See blog post for more on examples at right.
- Complex, known physics; uncertain parameters:
 - Skin effect and wave propagation
 - Mechanical vibration: See ref [5]*.
- Poorly understood:
 - Higher loss on surfaces than in bulk.

*Slides in on the memory stick are only a placeholder. Find these, with references, at sites.dartmouth.edu/power-magnetics/

Surface losses in MnZn ferrite confirmed

- Confirmed to be surface effect by dynamic calorimetry.
 D. Neumayr, D. Bortis, J. W. Kolar, ETH Zurich.
- A prototype with NiZn ferrite does not have this problem.

Talk Wed. 09:45, "A Low-Loss Inductor", Session T12, Magnetics, paper 1487, Yang, Hanson, Perreault and Sullivan.

Dimensional Effects: plots of |B| in a round centerpost

Skin effect, affected by μ and σ (permeability and conductivity)

Figures from Glenn Skutt's excellent PhD thesis: "High-Frequency Dimensional Effects in Ferrite-Core Magnetic Devices," Virginia Tech, 1996.

Rough core leg size for these effects

For low loss, skin effect may be important sooner than shown.

Dimensional effects: implications

- For large area core legs at high frequency:
 - Segmented, laminated, or "bundle of sticks" approach.
 - Measurement data taken on a different core size may not be adequate.
- Very rough idea of size and frequency thresholds
 - ~ 1 cm at 1 MHz with MnZn ferrite.
 - ~ 1 cm at 10 MHz with NiZn ferrite.
- Data on ε and ρ combined with streamlined modeling could avoid the need for loss measurement of every core size.
- Caution: ϵ and ρ vary with frequency and temperature.

Afternoon: Fringing

- Changes air-gap reluctance.
 - Calculations rarely needed: design based on reluctance \mathcal{R} , not gap length ℓ_q , and find the gap experimentally.
 - If needed, calculations are in the appendix.
- Extra winding loss.
- Extra core loss in laminated/tape wound cores: eddy currents.

sites.dartmouth.edu/power-magnetics/

13

- Flux crosses perpendicular to laminations, inducing loss.
- The "out-of-plane flux" (OOPF) causes excess power loss *P*_{OOFP}.
- Only a problem on two sides of a post.
- Solutions exist: patented shapes and configurations [9],[10].

Low Permeability

- Strong field near the gap causes increased eddy-current winding loss.
- Curved field is bad for foil windings:

sites.dartmouth.edu/power-magnetics/

One conceptual approach

- Solid winding.
- Current flow is attracted to gaps.
- Amount of current is proportional to gap reluctance.

sites.dartmouth.edu/power-magnetics/

Which winding has larger loss, with the same ac current in each winding?

sites.dartmouth.edu/power-magnetics/

Single gap

- All current flows near the gap.
- Longer gap → Current is spread over a larger area
 → lower loss.
- Current with small gap is spread wider than gap.

sites.dartmouth.edu/power-magnetics/

18

One design approach:

- Spread several gaps evenly:
 - Spacing x between gaps.
 - Distance x/2 from edge of winding.
- Choose spacing s < x/3.
- Current distribution is not perfect, but "pools" of current overlap and impact on loss is small.
- For details, see ref. [1]

sites.dartmouth.edu/power-magnetics/

Are all equal spacings gaps equal?

- Current spreads to both sides of gap.
- Position accordingly: x/2 on edges.

sites.dartmouth.edu/power-

Winding shape optimization

- Shape winding configuration to work with curved gap field.
- Applies to round wire and litz wire, not foil.
- Can actually work better than a distributed gap!
- Ad-hoc approach common, but full optimization is available [2,3,4].

- Current flows near the gaps.
- A wider gap lowers resistance.
- Spacing s > x/3 is a good rule.
- Not all equally spaced gaps are equal—first gap x/2 from edge.
- Shaped windings with a single gap.

23

1867

Ways forward on core loss: Industry

Magnetic material users

- Ask suppliers for data.
- Estimate skin effect for MnZn ferrites; consider segmented core.
- For non-sinusoidal waveforms: Barg refinement of iGSE (different parameters for each segment).

Magnetic material suppliers

- Data with dc-bias.
- Data in electronic form.
- Data for different core sizes.
- Data on resistivity (and permittivity?).
- Tolerances: min and max loss
- Data for square-wave drive.

Ways forward on core loss: research

- Integration of models for different loss effects.
 - Hope: effects considered separate maybe different aspects of the same effect.
 - Comprehensive, accurate, research models.
 - Practical, usable models for designers.
- Simple, nonlinear simulation models.
 - Linear models can't match observed behavior.

sites.dartmouth.edu/power-magnetics/

25

References: Core loss

- [1] Sobhi Barg, K. Ammous, H. Mejbri, and A. Ammous, "An Improved Empirical Formulation for Magnetic Core Losses Estimation Under Nonsinusoidal Induction," IEEE Trans. Pow. Electr. 32(3), March 2017
- [2] Benedict Foo, A. Stein, C. Sullivan, "A Step-by-Step Guide to Extracting Winding Resistance from an Impedance Measurement", APEC 2017.
- [3] K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," in *IEEE Workshop on Computers in Pow. Electr.*, 2002. https://engineering.dartmouth.edu/inductor/papers/IGSE.pdf
- [4] Glenn Skutt, "High-Frequency Dimensional Effects in Ferrite-Core Magnetic Devices," Virginia Tech, PhD thesis 1996. Available for download from Virginia Tech.
- [5] C. A. Baguley, U. K. Madawala, B. Carsten and M. Nymand, "The Impact of Magnetomechanical Effects on Ferrite B–H Loop Shapes," in *IEEE Transactions on Magnetics*, vol. 48, no. 8, pp. 2284-2292, Aug. 2012. doi: 10.1109/TMAG.2012.2191297
- [6] A.P. Van den Bossche, D.M. Van de Sype, V.C. Valchev, "Ferrite Loss Measurement and Models in Half Bridge and Full Bridge Waveforms," IEEE Power Electronics Specialists Conference, 2005. doi: 10.1109/PESC.2005.1581834

- [1] Jiankun Hu, C. R. Sullivan, "AC Resistance of Planar Power Inductors and the Quasidistributed Gap Technique", IEEE Tran. on Power Electr., 16(4), pp. 558–567, 2001. https://engineering.dartmouth.edu/inductor/papers/qdgi.pdf
- [2] Jiankun Hu, C. R. Sullivan, "Analytical Method for Generalization of Numerically Optimized Inductor Winding Shapes", IEEE Power Electronics Specialists Conference, pp. 568–573, June 1999.
- [3] Jiankun Hu, C. R. Sullivan, "Optimization of Shapes for Round Wire, High Frequency Gapped Inductor Windings", IEEE Industry Applications Society Annual Meeting, pp. 907–911, Oct. 1998.
- [4] C. R. Sullivan, J. D. McCurdy, R. A. Jensen, "Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings", IEEE Power Electronics Specialists Conference, June 2001.
- [5] J. D. Pollock, C. R. Sullivan, "Loss Models for Shaped Foil Windings on Low-Permeability Cores", IEEE Power Electronics Specialists Conference, pp. 3122–3128, June 2008.
- [6] J. D. Pollock, C. R. Sullivan, "Modelling Foil Winding Configurations with Low AC and DC Resistance", IEEE Power Electronics Specialists Conference, pp. 1507–1512, June 2005.
- [7] J. Pollock, C. R. Sullivan, "Gapped-Inductor Foil Windings with Low AC and DC Resistance", IEEE Industry Applications Society Annual Meeting, pp. 557–663, Oct. 2004.
- [8] Lundquist, Weyman, Vivien Yang, and Carl Castro. "Low AC resistance foil cut inductor." Energy Conversion Congress and Exposition (ECCE), 2014 IEEE. IEEE, 2014.
- [9] US Pat. No. 9,123,461B2
- [10] US Pat. No. 8,466,766

sites.dartmouth.edu/power-magnetics/

27

Another example

- Both gaps are small enough that it doesn't matter much.
- Shorter gap is worse.

sites.dartmouth.edu/power-magnetics/

Fringing reluctance calculation

$$\mathcal{R}_{faces} = \frac{\pi}{p \cdot \mu_0 \left(1 + \ln \frac{\pi \ell}{2\ell_{gap}}\right)}$$

$$\mathcal{R}_{corners} = \frac{1}{\mu_0 k \ell}$$

where

p = perimeter = 2(w+d)

k = 1.23

29