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Abstract—Matching networks have useful applications in
transforming voltages and impedances in resonant inverters and
dc-dc converters. Stacking multiple stages of matching networks
can, in some cases, increase the efficiency because each stage is
responsible for smaller transformation, but it also reduces the
available inductor volume for each stage which can increase the
loss. We present optimization of matching networks with volume
constraints to determine the optimum number of stages and other
design choices for various transformation ratios, volumes and
impedances. Scaling models of inductor performance with size
are presented and their effect on the efficiency of single-stage
and multistage matching networks is analyzed. The analytical
results are verified by an experiment using 1- and 2-stage
matching networks with a total volume constraint and a voltage
transformation ratio of 4. Simple design rules for designing
matching networks are presented for voltage transformation
ratios lower than 20.

I. INTRODUCTION

Matching networks, two-port circuits for impedance and
voltage transformations, are widely used in RF communica-
tions. In power electronics, they have useful applications in
resonant inverters and dc-dc converters, and analysis and de-
sign considerations for high efficiency matching networks are
described in [1]. Assuming inductors with a fixed maximum
quality factor (fixed-Q case), and purely resistive input and
load impedances for each stage, that analysis derives an upper
bound on the optimum number of stages that should be used
for any desired voltage transformation ratio.

The assumption of a fixed quality factor means that adding
an extra stage to a matching network also increases the
volume. However, practical design scenarios usually limit the
available volume. Thus, adding a total volume constraint to the
analysis in [1] can provide insights into the optimum number
of stages that need to be used in practical designs.

Relaxing the resistive impedance assumed in [1] gives a
different design framework [2], and results in optimal effi-
ciencies higher than those derived the in fixed-Q resistive-
impedance analysis in [1]. These implications are discussed
further in Section IV-C. In this paper, however, we assume
purely resistive input and load impedances for each stage,
similar to the analysis in [1].

Inductor performance usually degrades as the volume gets
smaller [3]–[6]. Thus, inductors required for a 2-stage match-
ing network will individually have a lower quality factor than
that for a single-stage matching network of the same total
volume. To account for the decrease in inductor quality factor
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Fig. 1. An L-section matching network transforming a high shunt-leg voltage
Vp to a low series-leg voltage Vs.

as the number of stages increases, we apply scaling laws for
inductor quality factor with size. We then examine the effects
of these scaling laws on the efficiency of matching networks
with a total volume constraint (fixed-volume case).

Matching network design equations are presented in Sec-
tion II. We present in Section III two inductor scaling mod-
els, namely scaling of linear dimensions [3] and optimizing
inductor dimensions [7], that describe the degradation of
inductor performance as it scales down in size. The scaling
models are then combined with matching network design
equations in Section IV to examine the trade-off between
inductor quality factor and voltage transformation ratio in a
multistage matching network. We also present simple design
rules for choosing the number of stages, and the transformation
ratio and volume of each stage. The effects of linear scaling
of inductor dimensions on matching network efficiency are
verified in Section V using 1- and 2-stage networks with a
voltage transformation ratio of 4 in a total volume of 1 cm3.

II. MATCHING NETWORK DESIGN EQUATIONS

We first present basic equations for designing matching
networks [1]. We assume L-section networks (Fig. 1), which
can be stacked together in a multistage configuration. Although
equivalent T- and Π-section networks with similar voltage
trasformation can be designed, they usually have lower ef-
ficiency than L-section networks [1].

For transformation from a high shunt-leg voltage Vp to a
low series-leg voltage Vs, the transformation quality factor is

Qt ≡
√
v2r − 1, where vr =

Vp
Vs
. (1)

To achieve the desired transformation, the passive components
need to be chosen such that Qt equals both the shunt-leg
quality factor Qp = Rp/|Xp| and the series-leg quality
factor Qs = |Xs|/Rs. |Xp| and |Xs| are magnitudes of the
reactances of the passive components used in the shunt-leg and



the series-leg respectively. The resistances Rp and Rs refer to
the resistances looking into the two legs and are related to Vp
and Vs by Rp/Rs = V 2

p /V
2
s ; they do not relate to the ESR

of the required capacitors and inductors [1].
The efficiency of such an L-section matching network

depends on the ESR, hence the quality factor, of the required
passive components. The quality factor of an inductor is
QL ≡ ωL/RL and that of a capacitor is QC ≡ 1/(ωCRC),
where RL is the inductor ESR and RC the capacitor ESR.
Capacitors are in general much more efficient and have higher
quality factors than inductors, and it is assumed in this paper
that QC � QL. Thus, losses and volumes of the required
capacitors are much smaller than those of the inductors and
are ignored in the analysis. The efficiency is given by [1]

η ≈ 1− Qt

QL
− Qt

QC
≈ 1− Qt

QL
. (2)

The efficiency of an n-stage matching network is the product
of the efficiency of each stage,

η =

n∏
i=1

ηi ≈
n∏

i=1

(
1− Qti

QLi

)
, (3)

where Qti and QLi are respectively the transformation quality
factor and the inductor quality factor of the i-th stage.

Each stage of a multistage matching network is responsible
for a smaller voltage transformation ratio and so has a smaller
Qti than does a single-stage network. On the other hand, the
available volume for each inductor in a multistage network
is smaller than that in a single-stage network, resulting in
a lower QLi. Thus, a multistage matching network may be
favorable compared to a single-stage network of the same
volume depending on how the inductor quality factor scales
with volume, which we investigate in the following section.

III. INDUCTOR SCALING

The quality factor QL of an inductor can be calculated as
ωL/RL where ω is the angular frequency, L the inductance
and RL the inductor ESR. Assuming a base quality factor QL0

for an inductor of base volume VL0, the quality factor QL of an
inductor in a different volume V can be calculated using some
scaling models. We use two different scaling models, namely
linear scaling of all dimensions and optimizing the inductor de-
sign for various volumes, assuming air-core inductors limited
by the skin-depth. Scaling of linear dimensions is used in [3] to
examine the loss and VA capability of inductors under various
constraints; the same scaling concept is used here and the
analysis is extended to include the inductance and the quality
factor of inductors. Optimization of the inductor design based
on inductor ESR and frequency is presented in [7], and that
analysis is extended here to include the effect of inductance
and available volume on the inductor quality factor.

A. Simple scaling of linear dimensions

The inductance of any inductors can be expressed as

L = N2µ
Am

lm
, (4)

where N is the number of turns in the winding, µ the
permeability, Am the effective magnetic flux area and lm the
effective magnetic path length. If all the linear dimensions are
scaled by a factor ε, the area Am scales as ε2 and the length
lm scales as ε, resulting in L ∝ ε. The skin-effect limited
inductor ESR is given by

RL = N2ρ
lw
bwδ

, (5)

where lw is the length of conductor loop in the winding, bw
the winding breadth and δ the skin-depth. Because δ only
depends on the frequency and conductor material properties,
RL is independent of ε, resulting in QL = ωL/RL ∝ ε.

Simply scaling all the linear dimensions without changing
the number of turns N changes both L and QL. Because the
required L depends on the desired voltage transformation ratio
vr, the dependence of QL on L also affects the matching
network efficiency. However, for large enough inductance
which requires many turns of wire, the number of turns N
gives an independent variable to approximately obtain the
desired L. Changing N does not affect QL because both L
and RL are proportional to N2. Thus, it can be concluded that

QL ∝ L0ε ∝ L0V1/3
L , (6)

where the second proportionality results from VL ∝ ε3. This
is strictly correct only when all dimensions are scaled by the
same factor. However, as will be discussed in Section III-B,
QL ∝∼ V

1/3
L even if the three dimensions of the inductor are

not scaled by the same factor. We include L raised to the
zeroth power in (6) to emphasize that the quality factor is
independent of L.

Let’s examine the case of halving all the linear dimensions
of a base inductor with a volume VL0, inductance L0, ESR
RL0 and quality factor QL0. The resulting inductor, with the
same number of turns as the base inductor, will have a volume
V = V0/8, with inductance L = L0/2, ESR RL = RL0 and
quality factor QL = QL0/2. If a different inductance value is
desired, it can be obtained by changing the number of turns
N without changing QL.

The scaling of linear dimensions provides a simple way to
calculate the quality factor of an inductor of any size using the
quality factor and the size of an optimally designed base-case
inductor. However, simply scaling all the linear dimensions
does not guarantee that the resulting inductor will have an
optimum design, and inductors usually have to be custom
designed for the available space and particular applications [3].
Moreover, linear scaling of all dimensions and the resulting
proportionality are only approximate because the number of
turns can only be an integer and wires are only readily
available in some standard sizes. In addition, because inductors
with fewer than one turn are physically impossible, there is a
lower limit on the inductance achievable without impacting the
quality factor. Thus, if a very low inductance is required, the
model of scaling linear dimensions breaks down and a single-
turn inductor needs to be designed with specific dimensions.
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Fig. 2. Single-layer solenoids with rectangular conductor; (a) single-turn, (b)
multi-turn.

B. Optimizing inductor design

Optimization of inductor design depends on the type of in-
ductor. We assume an air-core solenoid in this paper; however,
the results can also be applied to toroids and inductors with a
magnetic core operated in the linear regime. The solenoid can
be single-turn or multi-turn and is wound with a rectangular
conductor (Fig. 2). The conductor thickness is assumed to
equal the skin-depth δ and the winding is limited to be a single-
layer to minimize proximity effect losses at MHz frequencies.

Assuming that the skin-depth is much smaller than the in-
ductor dimensions, we can derive the inductance, the inductor
ESR and the quality factor as

L =
N2µK πr2L

wL
=
N2µK π2r4L

VL
, (7)

RL ≈
N2ρ 2πrL

wLδ
=
N2ρ 2π2r3L
VLδ

, (8)

QL ≈ 2πf µKrL
δ

2ρ
=
rLK

δ
, (9)

where rL is the solenoid radius, wL the solenoid width, K
the Nagoka coefficient which is a correction factor for the end
effects in an air-core coil of finite length [7], [8] and VL the
inductor volume. The second equalities in (7) and (8) result
from the volume constraint VL = πr2LwL.

If a large inductance is required for the desired voltage
transformation, a solenoid with a multi-turn winding and/or
a cross-section larger than the length is needed. However,
because the reluctance of the flux path for such a short solenoid
is dominated by the return path reluctance, using a larger
number of turns is more efficient than using a larger radius [7].
Thus, the required L can be achieved by varying N ; this does
not affect QL since both L and RL are proportional to N2.
Thus, it can be concluded that QL ∝∼ L0rL ∝ L0V1/3

L , the
same result as in (6) for simple scaling of linear dimensions.
The first proportionality is only approximate because (7) and
(8) do not account for the thickness δ of the conductor, which
becomes significant as the volume gets smaller. Because QL

depends on δ (9), the constant of proportionality and QL vary
with the square root of the frequency.

The proportionality QL ∝ V1/3
L is derived from the propor-

tionality QL ∝ rL or QL ∝ ε assuming that all dimensions
are scaled by a scaling factor ε, which results in VL ∝ ε3.
However, QL ∝ V1/3

L can be considered approximately true
even if all the dimensions are not scaled by the same factor. A
specific inductance can be achieved inside a particular volume
using various number of turns if the inductor aspect ratio is
adjusted accordingly. For example, Fig. 3 shows the achievable

Fig. 3. The quality factor as a function of the number of turns for 1 cm3

and 0.5 cm3 inductors at 13.56 MHz. The inductance is the same along each
curve, obtainable by varying the inductor aspect ratio. The peak values of QL

for all three curves are obtained at the same aspect ratio.

quality factor of a 1 µH inductor within a 1 cm3 volume
at 13.56 MHz as a function of the number of turns in the
winding; a quality factor as high as 200 can be achieved
using 10 turns. However, the peak in the QL vs. N curve
is broad enough that QL only decreases to 197 for N = 9
and 196 for N = 13. This difference in N means that the
aspect ratios of the 9-turn and 13-turn inductors are different in
order to achieve the same inductance. However, both inductors
have QL approximately equal to the optimal quality factor.
Fig. 3 also shows the achievable quality factor for inductors
with half the volume (0.5 cm3) and two different inductances.
These half-volume inductors have a maximum quality factor
of around 158 (≈ 200/ 3

√
2), with the same broad peak. Thus,

QL is reduced by approximately a factor of 3
√

2 if the volume
is halved, with or without preserving the aspect ratio. Thus,
it can be concluded that QL ∝∼ V

1/3
L even if all the inductor

dimensions are not scaled by the same factor.
For small inductances, N is limited to unity and the solenoid

needs to be thin and long, in which case K ≈ 1. The
dependence of QL on L can be derived from (7) and (9) as

rL =

(
LVL

N2µKπ2

)1/4

=

(
LVL
µπ2

)1/4

, (10)

QL =
rLK

δ
=
rL
δ

=
1√
πδ

(
LVL
µ

)1/4

. (11)

Thus, QL ∝ L1/4 V1/4
L for small inductance values.

This effect of optimizing the inductor design can be visual-
ized by a contour plot of QL as a function of the required L
and the available volume. Fig. 4 shows such a contour plot
for 13.56 MHz. When the required inductance is high (in
the multi-turn regime above the boundary in Fig. 4), QL is
independent of L and approximately proportional to V1/3

L . In
this case, the optimization of inductor design converges to the
simple scaling of linear dimensions because the required L is
large enough that it can be varied by changing the number
of turns N without affecting QL. On the other hand, if the



Fig. 4. Contour plot of log of the the maximum achievable inductor quality
factor as a function of the required inductance and the available volume. The
inductor winding is one skin-depth thick foil at 13.56 MHz. The blue dashed
line represents an approximate boundary between the multi-turn inductor
regime (vertical contours above the line) and the single-turn indutor regime
(diagonal contours below the line).

required inductance is small (single-turn regime below the
boundary in Fig. 4), a single-turn inductor is required and
the quality factor converges to (11).

It should be noted that Fig. 4 is specific to 13.56 MHz and
the single-layer solenoid (Fig. 2). However, the proportional-
ities in (6), (9) and (11), hence the shape of the contour plot,
are applicable for different frequencies and non-magnetic-
core toroids with a single-layer winding. The constants of
proportionality will, however, be different depending on the
operating frequency and the inductor geometry.

IV. MATCHING NETWORK OPTIMIZATION WITH A
VOLUME CONSTRAINT

We have presented matching network design equations for
calculating the required inductance and capacitance to achieve
the desired transformation ratio and the efficiency of the re-
sulting network. Depending on how the inductor performance
varies with a constrained volume, it may be beneficial to
increase the number of stages in a matching network. In
this section, we present an analysis to determine when it is
necessary to increase the number of stages to achieve the max-
imum possible efficiency. The scaling of inductor performance
depends on the required inductance as discussed in Section III,
which we use in this section together with matching network
design equations to calculate the optimum number of stages
for a matching network and the corresponding design choices.

A. Scaling of linear dimensions

The efficiency η of a matching network depends only on Qt

and QL as shown in (2) and is independent of L except for
possible relations between L and Qt or QL. The transforma-
tion quality factor Qt depends on the desired transformation
ratio vr and the inductance L needs to be chosen such that Qt

equals the shunt-leg or the series-leg quality factor; thus, the
value of L depends on Qt and not vice versa. Moreover, the
simple model of scaling linear dimensions in (6) results in QL

Fig. 5. Matching network efficiency η vs. voltage transformation ratio vr ,
assuming the inductor quality for the base case is 200. Solid lines represents
the fixed-volume analysis of this paper and dashed lines represent the fixed-Q
case in [1]. The result for 1-stage matching network is the same for both
cases. The 2-stage and 3-stage networks in the fixed-Q case respectively have
double and triple the volume of the 1-stage network. The asterisks represent
the operating point that will be verified experimentally in Section V.

that depends only on the volume VL and not on the required
inductance L (Section III-A). Thus, in this case of scaling
the linear dimensions, the matching network efficiency only
depends on vr and VL, and not on L.

For an n-stage matching network, the overall efficiency (2)
needs to be maximized subject to the voltage transformation
ratio constraint vr =

∏n
i=1 vri and the volume constraint V =∑n

i=1 Vi. Due to these constraints, it can be derived from (3)
that the efficiency of a multi-stage network is maximum if the
transformation ratio and the volume, hence the efficiency, of
all the stages are equal. A similar result is derived in [1] for the
fixed-Q case. Thus, for the maximum efficiency in an n-stage
matching network, each stage should have a transformation
ratio v1/nr and a volume V/n.

Assuming that a base inductor quality factor QL0 = 200
is achievable within a base volume VL0, the efficiency of
an n-stage matching network can be calculated for various
vr. For reference, this quality factor of 200 is theoretically
achievable with a 1 cm3 volume at 13.56 MHz (Fig. 4). In a
2-stage network with vr = 4, for example, each stage will have
vri = 2 with Vi = VL0/2. This results in each inductor having
QLi = QL0/

3
√

2 = 159 and an overall matching network
efficiency of (1 −

√
22 − 1/159)2 ≈ 0.978. This calculation

is repeated for different vr ranging from 1 to 100 and for
various number of stages. Fig. 5 shows the efficiency of 1-, 2-
and 3-stage matching networks with vr ranging from 1 to 10.
For comparison, the results of the fixed-Q analysis from [1]
are also included in Fig. 5. Because of the smaller volume
available for each stage in the fixed-volume case compared
to the fixed-Q case of [1], the inductors have a lower quality
factor, resulting in a lower efficiency for the fixed-volume case.

More important, the transformation ratio breakpoints above
which it is more efficient to add an extra stage to the matching
network are different for the two cases. For example, in the
fixed-Q case of [1], a single-stage network is the most efficient



Fig. 6. Optimum number of stages vs. voltage transformation ratio vr ,
calculated using QL0 = 200.

for vr . 3 but in the fixed-volume case, the advantage of a
single-stage network extends up to vr ≈ 5.3. Table I shows
the optimum ranges of vr, and the corresponding QL and total
volume Vtot for 1-, 2- and 3-stage networks for the fixed-
volume analysis of this paper and the fixed-Q analysis of [1].

The optimum number of stages for various transformation
ratios can be visualized as shown in Fig. 6. In the fixed-Q
case, matching networks of up to 6 stages may be beneficial
for vr < 100. However, this is only an upper bound on
the optimum number of stages since a more-efficient fewer-
stage matching network may be designed using higher-Q
inductors [1]. Constraining the design space by volume gives
the optimum number of stages that should actually be used
rather than an upper bound. This volume-constrained analysis
shows that no more than 4 stages should be used for vr < 100.
An experimental verification for the difference between the
two cases is discussed in Section V.

The results in Figs. 5 and 6 are calculated using a base
quality factor QL0 = 200, which approximately corresponds
to the theoretical maximum quality factor of a 1 cm3 air-core
solenoid with a single-layer winding (Fig. 2) at 13.56 MHz.
The base quality factor will be different if the available
volume or the operating frequency is different, or if practical
implementation limits the achievable quality factor. In such
cases, the efficiency curves in Fig. 5 will shift up or down
depending on QL0. However, the optimum number of stages
and the corresponding voltage transformation ratio breakpoints
will remain approximately the same as those shown in Fig. 6.

B. Design in the Low Impedance Regime

If the required inductance and available volume for each
stage is in the single-turn regime (Fig. 4), both QL and vr
are impacted by the inductance L. This scenario arises if the
desired resistances Rp or Rs are very low (� 1 Ω), or a large
number of stages is to be used. In this case, dividing the total
volume equally among different stages is not optimal since
some stages may have higher-Q inductors than other stages
and it may be more efficient to devote higher-Q stages for

larger voltage transformation and larger volumes for lower-Q
inductors. Thus, the optimum volume and transformation ratio
for each stage are no longer V/n and v

1/n
r respectively and

optimization is required.
The optimization result depends on whether the matching

network is low-pass or high-pass, and the desired shunt-leg and
series-leg resistances Rp and Rs. In this paper, we present
an inductor design optimization for a high-pass matching
network. To emphasize the maximum effect of (11) on the
result, we choose Rs to be an extremely low 0.1 mΩ for
demonstration. The final results may be different for a higher
Rs and converge to simple scaling of linear dimensions for
Rs & 0.1 Ω in the range of volumes shown in Fig. 4.
The 0.1 mΩ resistance is chosen considering Fig. 4 and
the 13.56 MHz operation frequency, and may not be useful
for actual impedance transformation due to the very low
impedance. However, for high power operation for which
much larger inductor volumes than shown in Fig. 4 are
available or required, Rs may not need to be as low for
QL to be dependent on L. Moreover, for higher operation
frequency (& 100 MHz), the value of Rs for which this effect
is triggered may be as high as 1 Ω.

We optimize the efficiency η of a 2-stage matching network
assuming Rs = 0.1 mΩ. For fixed values of vr, particle swarm
optimization is performed to maximize the efficiency with
respect to vri and VLi subject to the transformation ratio and
volume constraints. The total volume is assumed to be 1 cm3.
Figs. 7 and 8 shows the optimization results. For vr . 4.3,
only one stage is responsible for the entire transformation and
occupies all of the volume whereas the other stage performs
no transformation and occupies no volume. This agrees with
Fig. 6 that a single-stage network is the most efficient for
vr < 5.3. The difference in the optimal vr breakpoint between
the two cases is due to the difference in Rs. For larger vr,
the transformation ratio and the volume of the two stages are
different and depend on vr. The higher-Z stage is in general
responsible for a larger transformation ratio (for vr & 7.5) and
occupies a smaller volume (≈ 0.4 cm3). This is because the
lower-Z stage is in general less efficient, and it is therefore
more efficient to dedicate the higher-Z stage for a larger
portion of vr. And a larger volume needs to be reserved for the
less-efficient lower-Z stage to maximize the overall efficiency.

C. General Design Rules

We have discussed the optimization of matching network
efficiency for the two cases of varying the inductor size
and presented the results for vr < 100. Power conversion
applications usually require vr < 20, and we present general
matching network design rules for these applications.

Based on Figs. 5–7, it is most efficient to use a single-stage
matching network for vr . 5 and a 2-stage network for 5 .
vr . 20. The inequalities are only approximate because the
optimum vr breakpoints between different number of stages
differ slightly depending on the required shunt-leg and series-
leg impedances.



TABLE I
MATCHING NETWORK OPTIMUM NUMBER OF STAGES AND TRANSFORMATION RATIOS

1 stage 2 stages 3 stages

fixed-volume QLi 200 159 139

(Vtot = 1 cm3) vropt 1 < vr < 5.3 5.3 < vr < 18.6 19.2 < vr < 63.0

fixed-Q Vtot 1 cm3 2 cm3 3 cm3

(QLi = 200) vropt 1 < vr < 3.0 3.0 < vr < 6.9 6.9 < vr < 15.6

Fig. 7. Optimum transformation ratio for each stage vri vs. overall
transformation ratio vr of a 2-stage matching network for low-impedance
transformation.

Fig. 8. Optimum volume for each stage Vi vs. overall transformation ratio
vr of a 2-stage matching network for low-impedance transformation.

For a 2-stage network, if both of the required inductances
are sufficiently large, it is most efficient to split the transfor-
mation and the volume equally between the two stages. The
inductance is considered high if it is in the multi-turn regime,
approximately defined based on the boundary in Fig. 4 as

Li & 10−6 3
√
VLi. (12)

Although this limit is estimated from the blue dashed line
in Fig. 4, which is specific for 13.56 MHz, the limit also
applies for other operating frequencies. This is because the
only frequency dependence of QL in (9) and (11) is via δ,
which impacts QL in both multi-turn and single-turn regimes
equally. Thus, a difference in operating frequency will shift

the level of contour plot in Fig. 4 but will not change the
position of the knee in the contour plot.

However, if the required inductances are much smaller than
the limit in (12), the lower-impedance stage should occupy
approximately 60% of the total volume while the higher-
impedance stage fills the remaining 40%. The vri split in Fig. 7
gives the highest efficiency. However, the optimum vri for the
two stages for 5 . vr . 20 are not much different from each
other. Thus, it may be simpler to split vr equally and keep the
60-40 volume split while sacrificing slightly in the efficiency.

For higher vr, the optimum number of stages can be chosen
based on Fig. 4. As with 2-stage networks, the transformation
ratio and the volume can be split equally among all the stages
if all the required inductances are high enough. Otherwise, vri
and VLi need to be optimized for the desired operating points.

The fixed-volume analysis of this paper and the fixed-Q
analysis of [1] both assume that the input and load impedances
of each stage of the matching network are purely resistive.
This results in optimum number of stages that should be used
for any desired transformation ratio vr. However, only the
input and load impedances of the overall matching network are
limited by the applications, and the intermediate impedances
between different stages can be complex. Allowing these in-
termediate impedances to be complex gives additional degrees
of freedom in designing multistage matching networks. In the
fixed-Q case, this results in a higher efficiency than discussed
in [1], and the efficiency approaches an asymptotic limit as the
number of stages increases [2]. Incorporating the fixed-volume
analysis discussed in this paper to the complex-impedance
optimization of [2] can give a better understanding on this
asymptote and is a topic for future research.

The results in this paper were derived using specific values
of f and Rs. The operating frequency is assumed to be
13.56 MHz throughout the paper. Because of the dependence
of QL on f , the achievable matching network efficiency will
be different if a different frequency is used; however, as
discussed in Section IV-A, the optimum number of stages as
a function of vr remains approximately constant. The limit
on the inductance values for the two different cases is also
independent of operating frequency. Moreover, the results in
Section IV-B were derived using Rs = 0.1 mΩ to demonstrate
the effect of the inductor design optimization on the efficiency
of the matching network, and may only apply for operation
at very high power or frequency. For cases in which the
inductance is only slightly smaller than the limit in (12), the
matching network design needs to be optimized for the specific
operating point required.



TABLE II
MATCHING NETWORK DESIGN AND CHARACTERISTICS

1 stage 2 stages

High-Z stage Low-Z stage

Ci (pF) 60.6 33.9 135.5

Li (µH) 2.42 5.42 1.36

VLi (cm3) 1 0.5 0.5

N 16 20 14

rL (mm) 6.0 5.9 4.6

wL (mm) 8.9 4.6 7.5

QL,theory 199 152 158

ηtheory (%) 96.15 95.60

AWG 26 32 26

Lmeas,1 (µH) 2.45 5.34 1.35

Lmeas,2 (µH) 2.46 5.35 1.36

QL,meas,1 168 145 138

QL,meas,2 162 141 132

ηtheory,Qmeas (%) 95.36 95.10

ηmeas (%) 95.36 94.92

V. EXPERIMENTAL VERIFICATION

We choose a voltage transformation ratio vr of 4 (asterisks
in Fig. 5) to experimentally verify the results of scaling of lin-
ear dimensions in Section IV-A. In the fixed-Q analysis of [1],
the efficiency of a 2-stage network (both with QL = 200) is
98.27%, higher than that of a 1-stage network of 98.06%.
However, when the total volume is constrained, a 2-stage
network only has an efficiency of 97.83% since the inductor
in each stage will only have QL = 159. Thus, we build 1- and
2-stage matching networks with 1 cm3 total inductor volume
to verify that a 1-stage network is more efficient than a 2-stage
network for vr = 4 when the total volume is constrained.

A. Design

High-pass L-section matching networks (inductor in the
shunt-leg and capacitor in the series-leg) with 1 stage and 2
stages were designed to transform a series-leg impedance Rs

of 50 Ω to a shunt-leg impedance Rp of 800 Ω at 13.56 MHz.
For the 1-stage network, vr = 4 gives Qt =

√
15 and

equating it to the shunt-leg quality factor Qp = Rp/(ωL) gives
L = 2.42 µH and the series-leg quality factor Qs = 1/(ωCRs)
gives C = 60.6 pF. Repeating the same calculation for the 2-
stage network, using vri = 2 and Qt =

√
3 gives the required

inductance and capacitance values for the lower-impedance
transformation from 50 Ω to 200 Ω followed by the higher-
impedance transformation from 200 Ω to 800 Ω. Table II
gives the required passive component values for 1- and 2-stage
networks with vr = 4 to transform 50 Ω to 800 Ω.

The required inductance values need to be achieved within
1 cm3 for the 1-stage network and 0.5 cm3 for the 2-stage
network. The required solenoid radius rL is calculated for
various numbers of turns N to achieve the desired L (similar
to Fig. 3), and the (N , rL) pair that gives the highest QL

is chosen for each inductor. Table II also gives the optimal
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Fig. 9. Experimental setup for measuring matching network efficiency. Two
identical matching networks are connected back-to-back to transform 50 Ω
to 800 Ω and back to 50 Ω. The network efficiency is equivalent to the S21
power gain measured by the network analyzer.

inductor designs and QL as predicted by (9). The 2-stage low-
Z inductor is approximately a smaller version of the 1-stage
inductor, with all the dimensions and the resulting QL scaled
by approximately 1/ 3

√
2. On the other hand, the 2-stage high-Z

inductor has similar rL as the 1-stage inductor but half the wL.
This is not the optimal design for this particular inductor but
the predicted QL of 152 is within 4% of the optimal QL 158
which can be achieved by scaling all the dimensions equally.

B. Experimental Setup

The wire gauges for the inductors were chosen such that
all the turns fits into a single layer. The inductances and the
corresponding quality factors were measured using an Agilent
4294A impedance analyzer and the results are in Table II. The
measured quality factors are about 10–15% smaller than the
predicted quality factor; the difference can be attributed to the
effect of fringing fields on the inductor winding resistance,
which is not included in (8). Low-loss capacitors (ATC 800B
series) are used to achieve the required capacitance.

The efficiency of the matching networks was measured
using a network analyzer. Two identical networks were built
for both 1-stage and 2-stage networks in order to perform
back-to-back transformation from 50 Ω to 800 Ω and back
to 50 Ω (Fig. 9). The same back-to-back transformation setup
is also used in [1] for measuring the efficiency of matching
networks. This setup allows matching both end impedances to
the 50 Ω output impedance of the network analyzer, which
minimizes the reflected power and simplifies the extraction
of efficiency from the measured S-parameters; the efficiency
simply equals the S21 power gain. The lower efficiency of
two back-to-back networks is also easier to measure than the
higher efficiency of a single network.

C. Results

The measured peak efficiencies ηmeas, as well as
the efficiencies predicted using theoretical inductor qual-
ity factors (ηtheory) and measured inductor quality factors
(ηtheory,Qmeas) are included in Table II. The close match
between ηmeas and ηtheory,Qmeas validates the efficiency anal-
ysis. Even though the measured and predicted QL are about
10–20% different, the scaling in (6) is approximately true.



Fig. 10. Measured efficiency vs. frequency for back-to-back pairs of 1- and 2-
stage matching networks described in Table II, with corresponding maximum
efficiency points.

Thus, the relative efficiencies of 1-, 2- and 3-stage networks
in Fig. 5 are still valid, and it is verified by ηtheory,Qmeas.

This relation is also confirmed by the measured efficiencies
of back-to-back 1-stage and 2-stage networks as shown in
Fig. 10. The 1-stage networks back-to-back have a peak
efficiency of 95.36% (each network efficiency ≈ 97.65%) at
13.47 MHz and the 2-stage networks back-to-back 94.92%
(each network efficiency ≈ 97.43%) at 13.57 MHz. The
networks can be fine-tuned so that the peak efficiencies occur
at the desired 13.56 MHz. However, the figure shows that
the 1-stage network is indeed more efficient than the 2-stage
network of the same volume for vr = 4.

This experimental result verifies the model of scaling the
linear dimensions and the effect of such scaling on the
efficiency of a single-stage and multistage matching network
shown in Figs. 5 and 6. As a result, the fixed-volume anal-
ysis presented in this paper provides a better perspective
on the optimum number of stages that should be used for
various transformation ratios whereas the fixed-Q analysis
in [1] provides an upper bound on the number of stages
that should be considered when designing matching networks.
Because adding an extra stage to a matching network creates
additional challenges regarding design, tuning, parasistics and
termination, there is an inherent implementation advantage to
using fewer stages in a matching network. The analysis in
this paper provides verified results on the number of stages
that need to be used to obtain the highest possible efficiency
for the desired voltage transformation ratio.

VI. CONCLUSION

We have presented two scaling models to describe the
variation of inductor performance with size and used them to
analyze the efficiency of matching networks. A simple scaling
of inductor linear dimensions can be used if the required
inductance is sufficiently high; in such cases, an equal split
of the volume and voltage transformation ratios among all the
stages is the most efficient. The optimum number of stages
derived in this case was experimentally verified by building 1-

and 2-stage matching networks using well-designed inductors
in a total volume of 1 cm3. The resulting inductor quality
factors scales similarly to the linear scaling model, and the
measured efficiencies of the matching networks closely match
the efficiencies predicted using the measured quality factors.

For low-impedance transformation which requires very low
inductances, the inductor design needs to be optimized for
the required inductance and available volume, resulting in an
uneven split of the volume and the voltage transformation
ratios among the stages.

Simple design rules for matching networks with transfor-
mation ratios lower than 20 were also presented to address a
wide range of power conversion applications. Although some
results are specific to particular frequencies and impedances,
the design rules in general can be applied for most cases.

Because adding extra stages to a matching network usually
involves complications regarding implementation, fewer stages
are in general preferable to a larger number of stages. The
fixed-Q analysis of multistage matching networks [1] provides
an upper bound on the number of stages that need to be
considered when designing matching networks. By combining
that analysis with scaling models of inductor performance,
this paper provides a basis for optimizing the efficiency of
multistage matching networks within a constrained volume
and calculating the optimum number of stages. This paper,
however, assumed that the input and load impedances of each
stage are purely resistive; relaxing that assumption may lead
to different optimal efficiencies and design rules, and is a
promising avenue for future research.
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