

High-Q Resonator with Integrated Capacitance for Resonant Power Conversion

Phyo Aung Kyaw

Aaron L. F. Stein

Charles R. Sullivan

29 March 2017

Dartmouth Magnetics and Power Electronics Research Group

Motivation

- Miniaturize power converters using high switching frequency
- > WBG semiconductors can switch efficiently at high frequency.
- Realizing miniaturization of magnetics through high frequency is hard.
 - Winding loss is high due to skin and proximity effects.
 - Inductor performance degrades as size scales down.
- Need low-loss winding structures at MHz frequencies

Solid and Litz Wire

Solid Wire

- \triangleright Skin depth (δ) of Cu at 1 MHz ≈ 66 μm
- > Large conductors (> 66 μm AWG 42) are not utilized well.
- > Small conductors have high resistance.

Litz Wire

- > Parallel connection of small conductors with equal current sharing
- \triangleright Effective litz wire needs diameter $\ll \delta$ (much smaller than AWG 42).
- ➤ Increasingly cost-prohibitive above 1 MHz

Thin Foil Conductor

- \triangleright Thin metal foils ($\ll \delta$) are commercially available.
 - Free standing foil down to 6 μm

- Thinner layers can be coated on plastic film substrates.
- > Need equal current sharing among multiple layers
- > Foil cannot be twisted like litz wire for equal current sharing.

10 layers, 16 μm Al

- > Similar to twisting litz wire
- > Add "ballast" impedance to each layer to force equal current
- > The ballast impedance needs to be capacitive to reduce loss.

Layer thickness $\ll \delta$

 $h \ll l \approx b$

Series resonance

Crosssection

Our Resonator Concept

Lower loss, easier to build

Our Resonator Concept

Magnetic cores can be used to straighten field lines.

Challenge

- > Low loss multilayer windings require:
 - Very thin copper layers (< 10 μm)
 - Low loss dielectric for ballasting capacitance
- Thin copper layers are hard to handle without wrinkling.
- Copper coated on low-loss dielectric substrate (e.g. Teflon) is expensive.

Solution

- > Copper coated on polyimide substrate (PCB industry-standard)
- > Free standing Teflon for ballasting capacitance

How does it work?

- ➤ Polyimide is low-cost but high-loss.
- ➤ But it does not experience significant electric fields.
- \triangleright Very low voltage drop across C_{HL}
- ➤ Low effective loss in polyimide

Prototype

Proof-of-concept prototype for performance of multi-layer structure

- ➤ 50 Copper strips
- Cu polyimide Cu
 (5 μm 25 μm 5 μm)
- > Dielectric: 50.8 μm PTFE
- Core: 67 Fair-Rite material
- Volume ≈ 15 cm³ (Winding and center block)
- > Series resonator in pictures

Single-layer Benchmark

- \geq 254 µm ($\gg \delta$ @ \sim 10 MHz)
- $\triangleright L, C \approx \text{Multilayer } L, C$
- \triangleright No core: $L \approx 55$ nH, $C \approx 3$ nF
- \triangleright Core: $L \approx 120 \text{ nH}, C \approx 3 \text{ nF}$
- ➤ Low ESR NP0 capacitor (ATC 800B Series)
- Pictures show a parallel resonator

Loss Model

$$R_{winding} = \frac{R_{LF,loop}}{M} F_r$$
 ac resistance factor

 \triangleright FEM simulation to accurately compute F_r

dielectric dissipation factor

$$R_{dielectric} = \frac{D}{\omega C}$$

$$R_{core} = \mathbb{R}\left(\frac{j\omega}{\mathcal{R}_a + \mathcal{R}_c^*}\right)$$
 reluctance

 $\triangleright \mathcal{R}_a$ and \mathcal{R}_c^* approximated from FEM simulation.

K

Loss Model (Single Layer)

- Winding loss is dominant (70% to 96% of total loss).
- \triangleright Magnetic cores reduces the winding loss (straight field lines + lower f_0).
- ➤ Dielectric loss ⇒ Dissipation in dielectric + capacitor plate loss + connection between capacitor and inductor

H

Loss Model

- We want multi-layer resonator to have lower loss than single-layer.
- ➢ If no magnetic core is used to straighten the field lines, multi-layer resonator has higher ESR than single-layer resonator.
- Magnetic cores make multi-layer ESR lower than single-layer ESR.

Results (Parallel Resonator)

W

Results (Parallel Resonator)

- Core significantly improves multi-layer performance.
- \triangleright The multi-layer structure provides $\approx 50\%$ improvement (with core).

Results (Series Resonator)

> Parallel and series resonators have similar quality factors.

Measurement vs. Loss Model

Very good agreement between the loss model and measurement.

R

Discussion (Core-Conductor Gap)

- ➤ Gap in prototype ≈ 2 mm
- > PTFE wider than copper
- ➤ Multi-layer resonator performance can be even better with smaller gap.

Goal: Design low-loss resonators that allow miniaturization of power converters using high frequency

Approach: Multi-layer windings of thin foil conductors with equal current sharing

- Lower winding loss because total conductor thickness is not skin depth limited.
- Integrated capacitance eliminates capacitor plate loss and inductor-capacitor connection loss.

Results (Proof-of-concept)

- > Single-layer resonator provides high $Q \approx 580 \text{ in} < 15 \text{ cm}^3$
- Multi-layer structures provide at least 50% improvement if magnetic cores are used to straighten the field lines, and better with smaller gap between conductor and core.
- Application in Wireless Power Transfer: Paper ID 1504, Thursday, T40.5

Future Work

- Optimize the resonator design for particular applications
- Practical fabrication approaches, considering core-conductor gap

Thanks!

Dartmouth Magnetics and Power Electronics Research Group