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@ What's a fringing effect?

= Flux near a core air-gap that bends out.
m Fringing causes:

= Lower air-gap reluctance than simple
predictions.

= Extra winding loss.

= Extra core loss in laminated/tape
wound cores: eddy currents.
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Fringing effect on air-gap reluctance ™
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= 2D: exact model by conformal mapping.
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m 3D effects include corners and curvature / /
of a round centerpost. f
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= Usually significant; for simple model see [1] or appendix. \ b ‘.‘ ‘

= Non-issue for design calculations: "'\
= Design based on reluctance £, not gap length £,,. o ‘ ‘

= Find necessary gap length experimentally.
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Fringing effect on core loss

m Flux crosses perpendicular to ]
laminations, inducing loss.

= The “out-of-plane flux” (OOPF) causes |

excess power 0ss P, ep. /

= Only a problem , // J
on two sides of
a post.

I
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@ Carsten patents to reduce fringing loss in D
laminated/tape-wound cores, 2013

US Pat. No.
9,123,461B2

US Pat. No. 8,466,766

sites.dartmouth.edu/power-magnetics/ 5

@ Fringing effect on winding loss

m Strong field near the
gap causes increased
eddy-current winding
loss.

m Curved field is bad for
foil windings:
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= Solid winding.

m Current flow is
attracted to gaps.

= Amount of current is
proportional to gap
reluctance.
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One conceptual approach

M

W, = 1000
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Single gap

= Which winding has larger
loss, with the same ac
current in each winding?
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Single gap

= All current flows near the
gap.

m Longer gap — Current is
spread over a larger area
— lower loss.

m Current with small gap is
spread wider than gap.
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Spread of current
near a small gap

Case 1:

Winding close to gap.

= Current spreads
beyond the edges
of the gap
according to the
skin depth 6
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@ Spread of current
near a small gap M

Case 2: Small skin
depth; winding
spaced from gap.

m Current spreads
over a width ~3s.
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@ One design approach:

= Spread several gaps evenly:

= Spacing x between gaps.
= Distance x/2 from edge of winding.
= Choose spacing s < x/3.

= Current distribution is not perfect, but “pools”
of current overlap and impact on loss is small.

s For details, see [1] Jiankun Hu, C. R. Sullivan, “AC Resistance of
Planar Power Inductors and the Quasidistributed Gap
Technique”, IEEE Tran. on Power Electr., 16(4), pp. 558-567,
2001. https://engineering.dartmouth.edu/inductor/papers/qdgj.pdf
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Are all equal spacings gaps equal? D

m Current
spreads to
both sides
of gap.

= Position
accordingly:
x/2 on edges.
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= MMF across gap = MMF
generated by the winding.

m Replace gap with a single-turn
ribbon carrying a current NI.

= The field is identical.
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@ Effect of gap length

= Same Nl in ribbon representing
the gap—more concentrated vs.
more widely spread out.

= Easy to see that the longer gap
will have a less intense fringing
field near the gap.

=X

= Far from the gap, the two are
identical.
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@ Effect of gap length 7
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= Same Nl in ribbon representing ) @ .
the gap—more concentrated vs.
more widely spread out. ) . .

= Easy to see that the longer gap ) . .
will have a less intense fringing ! . .

field near the gap.
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= Far from the gap, the two are
identical.
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Winding shape optimization

= Shape winding configuration to work with
curved gap field.

= Applies to round wire and litz wire, not foil.

= Can actually work better
than a distributed gap!

= Ad-hoc approach common, but
full optimization is available.
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Examples of optimized shapes 7
Dartmouth 19 19 10; 19
“shapeopt” i _ ® d 9
software, 8 wire 8 8 8
available free gap7 ! 7 7
on our web 6 6 6 6
site. = ° ° s empty
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@ How much benefit from shape optimization? "M
10 d T
=  Compare designs optimized
based on x
1-D analysis to true shape- g% o .
optimized designs. Py NG ) e
P _ & 8 1 6\(\%6 x d\c‘\oﬁ/ .
= Up to 4X improvement. g R\ o °
. § NG YA
= AWG 38 strand litz. s & e
= Optimization tool available Xxy’ °© .\1ed
for download or on our site Lo oo
https://engineering.dartmouth.edu/inductor/shapeopt.shtml 0.1 }//U [ _ S‘(\'&Q
® [+]
= References 2-4. s °
‘IiIJU ‘ -11000
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@Shaped foil winding

= “Single layer” performance like helical
winding—high-frequency current on
tips on each turn.

= Size of cutout optimized for Rac vs.
Rdc tradeoff.

= Expensive to build, but there’s a
commercial proprietary configuration
with similar performance that’s
cheaper to build.

@ How much benefit?

= Optimum cutout size —
depends on ripple ratio .

= Contour lines of total
power loss at 20% ripple

® The optimum circular
cutout reduces loss by 63%.

® References 5.
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= Calculations are rarely needed. .'| I|| ‘ m {

= Lower air-gap reluctance than simple predictiohs

= If needed, the appendix has an accurate, simple calculatlon
from [1].

= Extra core loss in laminated/tape wound cores: eddy currents.

= Some mltlgatlon optlons E T
“ ~— US Pat. No.
US Pat. No. 9,123,46182
8,466,766 \‘
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@ Conclusions Il

= Current flows near the gaps.

= A wider gap lowers resistance.
= Spacing s > x/3 is a good rule.

= Not all equally spaced gaps are
equal—first gap x/2 from edge.

Shaped windings with a smgle gap
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Another example 7

= Both gaps are small
enough that it doesn’t
matter much.

= Shorter gap is worse.
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Fringing reluctance calculation

Rfaces = z
p-ﬂo{l+ln2;r€ ]
gap
RC'OI‘JI(ZJ'S = 1
Mokt
where

p = perimeter = 2(w+d)
k=1.23
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