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Abstract

Nearly eight decades after Erwin Schrödinger proposed his famous cat paradox, the

boundary between classical and quantum physics is becoming accessible to experimental

study in condensed matter systems, in which macroscopic and microscopic degrees of

freedom interact with each other. The cavity-embedded-Cooper pair transistor (cCPT)

is an ideal candidate for such a study in that it is not only strongly and intrinsically

nonlinear but also fully quantum mechanical.

A novel technique, based on the circuit quantum electrodynamics architecture, is first

introduced for applying a dc bias to a high-Q superconducting microwave cavity. The

development and investigation of the cCPT system, in which a Cooper pair transistor

acting as a single artificial atom is directly coupled to an on-chip dc-biased high-Q

resonator, is then presented. Self-oscillations in the cCPT, internally driven by the ac

Josephson effect, demonstrate the strong and phase coherent coupling between matter

and light in the cCPT. Meanwhile, photons continually produced by the system are

collected and characterized by quantum state tomography, which indicates the non-

classical nature of the emitted light and the nonlinear quantum dynamics of the cCPT

system.
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Chapter 1

Introduction

1.1 Quantum-to-Classical Transition

Ever since the 1920s, quantum mechanics has been developed to describe the behavior

of the microscopic objects, such as atoms and molecules, which could not otherwise

be explained by classical physics. The tremendous success of quantum mechanics over

the past century, which lays the foundation of modern technology and the information

era, has led to the general belief that it is the fundamental theory of the world. Yet the

macroscopic world, composed of atoms and molecules, is well-described by Newton’s laws

of motion. In many ways, quantum and classical physics are fundamentally incompatible,

which perplexed the pioneers of quantum mechanics and their followers, since the advent

of the quantum theory and even until today. If quantum physics is really the fundamental

theory of our world, then the Newtonian mechanics should emerge from the underlying

1



Chapter 1. Introduction

quantum physics as an object becomes more macroscopic – the so-called quantum-to-

classical transition (QCT).

In 1935, Erwin Schrödinger [1] proposed a famous thought experiment, i.e. Schrödinger’s

cat, to illustrate the problem of quantum mechanics being applied to everyday objects.

This paradox raised questions about whether quantum mechanics breaks down for the

macroscopic world. Unlike the smooth transition between special relativity and classical

mechanics, the boundary between quantum and classical physics is not clear and the

QCT is much more complicated. This section follows the discussion in Bhattacharya et

al. [2].

Figure 1.1: Schrödinger’s cat: a cat, a flask of lethal poison, and a radioactive source
are placed in a sealed box. Once triggered by the decay of a radioactive atom, the flask is
shattered, releasing the poison that kills the poor cat. The Copenhagen interpretation
[3] of quantum mechanics implies that after closing the box for a while, before one
reopens it, the cat is simultaneously alive and dead. Yet, when one looks inside the

box, one finds the cat either alive or dead, not alive and dead at the same time. [4]

To understand the origin of the incompatibility between classical and quantum physics,

let us review the foundation of Newtonian physics. The motion of a classical particle is

2



Chapter 1. Introduction

governed by Newton’s equations:

ẋ =
p

m
(1.1)

ṗ = F (x, t) = −∂xV (x, t) (1.2)

where V is the potential and F is the force on the particle. The evolution of the classical

dynamics of this particle is determined by these two equations together. In phase space,

the state of a classical particle at any given time corresponds to a point and its motion

during a time interval corresponds to a trajectory.

In contrast, the state of a quantum particle can not be described by a point with a definite

position and a definite momentum in phase space, because of the Heisenberg uncertainty

principle. While classical mechanics deals with trajectories in phase space, quantum

mechanics is intrinsically probabilistic. The quantum state of a particle can only be

described by some kind of quasi-probability density distribution in phase space. The

Wigner function the probability distributions earliest introduced in quantum mechanics

and is defined as [5],

W (x, p) =
1

h

∫
e−ipx

′/~ψ(x+ x′/2)ψ∗(x− x′/2)dx′ (1.3)

where ψ(x) is the wave function. The integral of the Wigner function over position x

gives the probability density for momentum p, and the integral over p gives the prob-

ability density for x. In spite of this desirable property, the Wigner function is not a

true probability distribution because it may be negative in some places, which in fact is

a signature of a quantum state.

3



Chapter 1. Introduction

Taking the time derivative of the Wigner function and using the Schrödinger equation,

i~
∂ψ(x, t)

∂t
=

~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) (1.4)

the quantum Liouville equation can be derived as [6],

∂W

∂t
= −[

p

m
∂x − ∂xV (x)∂p]W (x, p) +

∞∑
λ=1

(~/2i)2λ

(2λ+ 1)!
∂2λ+1
x V (x)∂2λ+1

p W (x, p). (1.5)

For a quantum particle to resemble the behavior of a classical object, its Wigner function

is required to be sharply peaked and stay localized in phase space, so that the centroid

of the Wigner function (viz. the mean of x and p, 〈x〉 and 〈p〉) can be interpreted as the

position and momentum of the quantum particle. From the quantum Liouville equation

(1.5), equations of motion for the centroid are given by [2],

〈ẋ〉 =
〈p〉
m

(1.6)

and

〈ṗ〉 = 〈F (x, t)〉. (1.7)

These are well-known as the Ehrenfest theorem [7]. We expand 〈F (x, t)〉 in a Taylor

series,

〈F (x, t)〉 = F (〈x〉) +
σ2
x

2
∂2
xF (〈x〉) + ... (1.8)

where σx is the standard deviation of x. For potentials containing terms up to quadratic

order in x, such as a free particle, a particle under a constant force or a harmonic

4



Chapter 1. Introduction

oscillator, the last term in both Eq.(1.5) and Eq.(1.7) would be zero. Hence, Eq.(1.5)

reduces to the classical Liouville equation and Eq.(1.7) becomes

〈ṗ〉 = F (〈x〉, t). (1.9)

In this case, the equations for the centroid 〈x〉 and 〈p〉 are the exactly same as the

Newton’s equations for a classical particle [Eqs.(1.1) and (1.2)] and the time evolution of

Wigner function in phase space recovers that of the corresponding classical distribution.

In general, if the potential V (x) has derivatives higher than the quadratic order, i.e.

a nonlinear system, the last term in Eq.(1.5) will not be zero. Moreover, even if the

Wigner function is sharply peaked at the beginning, it has a tendency to spread out over

phase space, so that the reduction to Eq.(1.9) remains valid. The associated quantum

dynamics of nonlinear systems then become qualitatively different from those of its

classical counterparts [2, 8, 9]. The quantum dynamics of nonlinear systems are therefore

of particularly interest in the study of the QCT.

In addition, chaos also illustrates the contradiction between classical and quantum me-

chanics [8]. A classical nonlinear system can be chaotic; i.e., it can be is extremely

sensitive to initial conditions. Separation between different trajectories in phase space

exhibit an exponential growth due to perturbations in initial conditions. On the con-

trary, owing to Heisenberg uncertainty principle, the evolution of a quantum system is

not very sensitive to initial conditions and thus the quantum system is not chaotic in a

classical sense. Again, this shows that the nonlinearity plays a central role in QCT.

5



Chapter 1. Introduction

As an example, we consider in some detail a nonlinear system that has been studied

in depth, i.e. the Duffing oscillator. The model of a driven nonlinear Duffing oscillator

is widely used in mesoscopic systems, such as Josephson junctions and nanomechanical

systems [8–11]. It is described by the equation

ẍ+ βẋ+ ω2
0x+ γx3 = A cosωF t. (1.10)

Here, ω0 is the natural frequency, β is the damping coefficient (β � ω0), γ is the strength

of nonlinearity (γ > 0), and ωF is the driving frequency. The corresponding Hamiltonian

is,

H(x, p, t) =
1

2
p2 +

1

2
ω2

0x
2 +

1

4
γx4 − xA cos (ωF t). (1.11)

This describes a double well potential with two stable states. For small driving amplitude

A, the driven oscillations are nearly sinusoidal, x(t) = a cos (ωF t+ φ). We assume that

the detuning δω = ωF − ω0 of the driving frequency ωF from ω0 is small and δω > 0.

Under these conditions, the system displays bistability for certain amplitudes. At the

bifurcation points AB1,2, one of the stable states disappears. As one stable state switches

to another, there is a great change in both the amplitude and phase of the driven

oscillation. This bistability can be used for sensitive quantum measurement, such as

measurement of the states of Josephson junction based qubits [12].

Katz et al. [9] calculated the classical and quantum evolution of a driven Duffing oscil-

lator coupled to an environment. They found that at a very early stage of the evolution,

the quantum Wigner function and the classical phase space distribution agree with each

6



Chapter 1. Introduction

other. In the regime where the typical quantum energy scale ~ω0 is comparable with

that of thermal energy kBT and the quality factor Q ≈ 103, the Duffing oscillator is ex-

pected to become bistable and one should expect to observe the deviation from classical

dynamics to quantum dynamics.

1.2 Quantum Computation

Quantum mechanics, being a century-old branch of physics, has struck an unprece-

dented interest in scientists and engineers from various fields in the last two decades,

by its seemingly unlikely marriage to another revolution in the history of human tech-

nology, namely, the invention of integrated circuits and digital computers. The children

of this marriage have been named as “quantum information processing” or “quantum

computing” [13].

Originally postulated by Richard Feymann in 1982 [14], a quantum computer takes

direct advantage of properties unique to quantum mechanics, such as superposition

and entanglement to represent data and perform operations on data. While a classical

digital computer stores data in classical binary digits (bits, i.e. 0 and 1), information is

represented in a quantum computer as superpositions of quantum bits (qubits, viz. |0〉

and |1〉 quantum states). Incredible advances in computational power have subsequently

been proposed by devising algorithms that are inherently quantum, such as Deutsch–

Jozsa algorithm [15], Shor’s algorithm [16], Grover’s algorithm [17], just to name a few.

7



Chapter 1. Introduction

Although this dissertation is not directly concerned with building a quantum computer

or implementing quantum algorithms, the engineering techniques developed and physics

insights gained by the quantum computing field has been a great help for this disserta-

tion, especially recent advances in superconducting circuits. Hopefully this dissertation

will in turn shine a light on the development of quantum computer in the near future.

1.3 Superconducting Circuits

Superconducting circuits, the quantum version of integrated circuits [18], are solid-state

circuits designed and fabricated using techniques borrowed from conventional integrated

circuits. They are commonly used to engineer superconducting quits, which act like co-

herent artificial atoms. They usually consist of capacitors, inductors and dissipationless

nonlinear Josephson junctions. They have several advantages over natural atoms.

First, as the name indicates, superconducting circuits become superconducting below

certain critical temperatures. This means they have ultra-low dissipation for carrying

and transmitting electrical signals.

Second, utilizing design concepts and techniques from conventional integrated circuits,

such as electron-beam or optical lithography, superconducting circuit wires and junctions

are reliably and most commonly made on silicon wafers. The micron and sub-micron

size of the circuit elements makes possible simplifying the circuits to a transmission line

model or even a lumped-element circuit [See Chapter 2 for details].

8



Chapter 1. Introduction

Third, in contrast to microscopic degrees of freedom, such as spins or atoms, super-

conducting circuits are easily coupled to conventional electrical circuits. Nonetheless,

strong coupling poses another challenge: how does one isolate the circuit from the noisy

environment so as to keep the circuit quantum coherent, while maintaining the control

and readout channels to the circuit. Fortunately, the circuit quantum electrodynamics

(QED) architecture answers the question.

1.4 Cavity Quantum Electrodynamics

g

γ

κ

H O R I Z O N S

In the past two decades, 
scientists and engineers 
in a variety of disciplines 
have been excited by the 
idea of quantum informa-
tion processing1, in which 
a computation is carried 
out by controlling a com-
plex collection of quantum 

objects. This idea seeks to combine two of the 
greatest advances in science and technology of 
the twentieth century. 

The first breakthrough is the development 
of quantum mechanics, with its sometimes 
strange and counterintuitive rules that hold 
sway in the domain of atoms and single parti-
cles. The second is the technological revolution 
that followed the invention of the integrated 
circuit and the advent of powerful digital 
computers, which gave rise to the current 
information age. Surprisingly, the seemingly 
bizarre quantum-mechanical ideas of super-
position and entanglement are expected to 
lead to a kind of natural parallel processing 
during computations. The unlikely marriage 
of these two revolutions could lead to incred-
ible advances in computational power, at least 
for certain special problems.

Unfortunately, the practical challenges to 
making a quantum information device are 
daunting. To build a quantum computer, the 
classical bits that store information in an ordi-
nary computer must first be replaced with 
quantum bits (qubits). These qubits can be 
composed of any quantum system with two dis-
tinct states (0 and 1), but they have the special 
property that they can be placed into quantum 
superpositions, existing in both states at once. 
A computation then proceeds by combining 
manipulations of the superpositions in single 
qubits (one-bit operations) and controlled 
interactions of multiple qubits (the quantum 
equivalent of logic gates). But to truly exceed 
the capabilities of conventional computers, the 
quantum engineer must acquire extremely pre-
cise control over the quantum domain, prevent 
any unknown evolution that affects the quan-
tum states (decoherence), and amass many 
thousands of qubits. Moreover, these qubits 
must then be ‘wired up’ in complex and pre-
scribed arrangements, so that they can interact 
and communicate their quantum information 

back and forth during the computation. 
Many different physical implementations 

of quantum information processors are being 
pursued today. Some systems comprise ‘natu-
ral’ candidates, such as single atoms, ions or 
spins, for which the manipulation of quantum 
states has a long history and is routine in many 
laboratories. Others are based on artificial 
systems in the solid state, such as quantum 
dots or superconducting circuits. These latter 
candidates have a certain appeal as they can 
be designed and fabricated using techniques 
borrowed from conventional electronics.

Before making a quantum information proc-
essor from solid-state systems such as super-
conducting circuits, two basic questions must 
be addressed. First, can the qubits be made 
from sufficiently ‘atom-like’ circuit elements, 
in which the macroscopic variables such as 
current and voltage can exist in controllable 
superpositions of distinct quantum states? And 
second, can we connect these qubits together 
in the required manner, perhaps using familiar 
electrical means such as actual wires, but keep-
ing in mind that any information transported 
must remain in its intrinsically quantum form 
and exchanged as individual quanta?

The answer to the first question, originally 
posed2 to test the applicability of quantum 

mechanics for macroscopic objects, is now at 
least a qualified ‘yes’. Pioneering work in the 
1980s on simple superconducting circuits 
incorporating a Josephson junction3 (see 
Box 1) showed that macroscopic variables 
such as voltages could indeed exhibit quan-
tum behaviour. Further work established that 
junctions could be considered as ‘atoms with 
wires’, which display energy-level quantization4 
and interact strongly with the electromagnetic 
environment5,6. It was not until the end of the 
1990s, however, that the first evidence for 
coherent superpositions7 and time-domain 
control of the quantum state8 in a supercon-
ducting qubit was demonstrated. 

The past decade has seen rapid progress in 
this field. Several different ‘flavours’ of super-
conducting qubit9 (see Box 1) have now been 
demonstrated, and two qubits have been cou-
pled to demonstrate the entanglement between 
them10 and to perform simple quantum logic 
operations11. The current state-of-the-art 
allows for superposition states that survive for 
several microseconds, long enough for hun-
dreds of operations on a single qubit. With 
improvements in superconducting qubit 
design, as well as in the materials and methods 
used for fabricating circuits, the lifetime of the 
stored quantum information may be further 
increased and the precision of qubit control 
and measurement enhanced.

But how can we address the second question 
and realize the quantum connections between 
qubits? For communicating quantum informa-
tion between real atoms, optical photons are 
natural candidates12. They have many advan-
tages, including rapid propagation and the 
ability to be guided on optical fibres for many 
kilometres without being lost. Superconduct-
ing qubits also interact electromagnetically, 
but because of their much smaller energy-level 
separations, the ‘photons’ they best couple with 
lie in the microwave range of the spectrum 
(frequencies of 3–30 GHz, or wavelengths of 
1–10 cm). Several authors13–22 have speculated 
that such microwave photons could be a route to 
connecting qubits, and recent experiments23–30

have demonstrated qubit–photon couplings 
in superconducting circuits. This approach is 
similar to the branch of atomic physics known 
as cavity quantum electrodynamics (cavity 
QED), which studies the interaction of photons 

Wiring up quantum systems
R. J. Schoelkopf and S. M. Girvin

The emerging field of circuit quantum electrodynamics could pave the way for the design 
of practical quantum computers.

Figure 1 | Cavity quantum electrodynamics. 
Schematic representation of a cavity quantum 
electrodynamics (QED) system, consisting of an 
atom with two energy levels interacting with a 
single photon mode (pink) trapped by mirrors 
(blue) to form a cavity. The blue dot is an electron 
occupying one of the energy levels. The strong 
coupling regime is reached when the interaction 
rate of the atom and a single photon (g) is larger 
than the dissipation arising from the loss of 
photons (at rate κ) or from emission from the 
atom into other modes at rate γ; in other words, 
when g >> κ,γ. 
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Figure 1.2: Schematic representation of a cavity QED system, consisting of a two-level
atom interacting with a particular mode of the optical cavity. [19]

Before diving into circuit QED, it is necessary to mention its elder brother, namely, cavity

quantum electrodynamics (cavity QED). Cavity QED is the study of the interaction

between light and matter confined in a reflective cavity, where the quantum nature of

light is significant. The simplest cavity QED system consists of a two-level ‘atom’ (such

as a natural atom, spin or qubit) coupled via a dipole interaction, to a single cavity

mode defined by two cavity mirrors, as in Fig. 1.2. The full quantum description of

9
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such a system is given by the Jaynes-Cummings Hamiltonian:

HJC = ~ωr(a†a+ 1/2) + ~ωaσz/2 + ~g(a†σ− + aσ+). (1.12)

The first term of the model is the cavity energy, which is represented by a harmonic

oscillator with angular frequency ωr. The second term describes the atom as a spin–1/2,

with transition energy ~ωa. The last term represents the dipole interaction between

light and atom, viz. the atom can either absorb (σ+a) or emit (σ−a†) a photon from or

to the cavity at a rate of g.

In reality, there are always incoherent processes involved in the system, such as photons

leaking out of the cavity at a rate of κ, or decay of the photon through other mechanisms

at a rate of γ. In the strong coupling regime of cavity QED, the exchange rate between

the atom and light is much greater than the combined rate of losses, i.e. g � κ, γ. In

addition, if the atom is in resonance with the cavity, the system would oscillate between

a cavity photon and an excitation in the atom many times, before the photon ever

escapes or the atom decays. This is known as vacuum Rabi oscillation, a phenomenon

that reveals the quantum nature of the light.

1.5 Circuit Quantum Electrodynamics

By switching the physical incarnation of cavity QED from optical cavity to supercon-

ducting microwave circuit and from natural atoms to artificial atoms, a new architecture

10



Chapter 1. Introduction

for studying quantum information and quantum optics, circuit quantum electrodynamics

(circuit QED) has been invented and developed over the last decade [20–22].
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dipole moment of this artificial atom is very 
large, often more than four orders of magni-
tude greater than the typical value for an elec-
tronic transition of a real atom. Because the 
qubit’s size and shape are adjustable, the dipole 
coupling can also be engineered by having the 
atom essentially fill the transverse dimension 
of the cavity, which means that the vacuum 
Rabi frequency (expressed as a fraction of the 
photon frequency) approaches a maximum 
value53 of a few per cent, set by the fine-struc-
ture constant (see Box 2). In comparison, the 
best values obtained so far using real atoms in 
either optical or microwave cavities are much 
smaller, of the order of one part in 106. The 
very large interactions achievable in circuit 
QED make it easier to attain the strong cou-
pling limit of cavity QED. Another advantage 
of circuit QED is that it avoids the difficulties of 
cooling and trapping the atom, as the qubit can 
be fabricated at precisely the desired location 
inside the cavity.

Several experiments with superconduct-
ing qubits in the past few years have accessed 
the regime of strong coupling, and have reca-
pitulated many classic results from quantum 
optics. Strong coupling with circuit QED was 
first achieved in 2004 (refs 23, 24), and a device 
like that shown in Figure 2b has been used23 to 
observe vacuum Rabi splitting in a solid-state, 
artificial system. When transmission through 
the cavity was measured when the qubit was 
tuned into resonance, two separate peaks (the 
vacuum Rabi splitting) could be resolved (see 
Fig. 3a, overleaf), corresponding to coherent 
superpositions of a single photon in the trans-
mission line and a single excitation of the qubit. 
A more recent experiment54 with an optimized 
qubit now approaches the fine-structure limit, 
with a dimensionless coupling strength of 
about 2.5%, yielding the large splitting shown 
in Figure 3b. Other experiments have observed 
vacuum Rabi oscillations in the time domain25 

and demonstrated a maser based on a single 
artificial atom30.

Circuit QED has also been used for quan-
tum communication and coupling between 
qubits. A source of non-classical microwaves 
has been demonstrated, for example, in which 
single photons are produced on demand27. 
This experiment also showed that the quantum 
information contained in a superposition state 
of a qubit could be mapped onto the photon 
state, demonstrating the conversion between 
a standing and a flying qubit, a milestone for 
quantum computation. Finally, a cavity has 
been used to realize a solid-state quantum 
bus, with a quantum state being transferred 
from one qubit to another using a microwave 
photon as the intermediary. This last achieve-
ment was made simultaneously in experiments 
with phase qubits29 and charge qubits28. Taken 
together, these experiments indicate that com-
munication between small prototype systems 
of several qubits, wired together with photons 
and cavities, is possible. The combination of 
techniques and concepts from quantum optics, 
in conjunction with the technology for super-
conducting quantum circuits, is likely to lead 
to continued rapid progress.

The combination of circuit QED and experi-
mental advances with superconducting circuits 
raises many interesting questions, and next we 
shall discuss some possible themes and areas 
for future work.

New regimes of quantum optics
As mentioned above, the relative coupling 
strength in circuit QED is many orders of 
magnitude greater than in the better-known 
versions of cavity QED with real atoms. This 
means that less-familiar, higher-order effects 
can have a noticeable influence. One exam-
ple is the dispersive, or off-resonant, case, in 
which the qubit and the photon interact with-
out the photon being absorbed. In the ‘strong 

dispersive regime’ in circuit QED26, this inter-
action, although roughly ten times smaller 
than the resonant case, is still larger than all 
sources of decoherence, a situation that has 
been accessed in only a few experiments with 
Rydberg atoms44,45. Circuit QED couplings can 
approach the limit where multiphoton effects, 
which are usually rare, play an important role. 
Other new phenomena include optical bist-
ability of the cavity, in which the presence of 
a single atom makes the cavity oscillations 
strongly anharmonic, and causes the entangle-
ment of multi-photon states. It is also possible 
to engineer strong photon–photon nonlineari-
ties, based for example on the simultaneous 
interaction of two cavities with a single qubit. 

What is the real limit on the strength of cou-
pling? It should be possible to push coupling 
strengths beyond the fine-structure limit dis-
cussed above for electric fields. For instance, 
if the current in a transmission line is passed 
directly through a Josephson junction53, the 
relative coupling can be larger than unity (g > ω, 
where ω is the transmission frequency of the 
atom/cavity), so the photon and the qubit cease 
to be separate entities and the coupling can-
not be considered as a perturbation. All these 
investigations could add significantly to the 
body of knowledge on the light–matter inter-
action already gleaned from cavity QED. 

What are the limits of coherence?
Perhaps the greatest outstanding problem with 
all solid-state implementations of quantum 
systems is how to minimize decoherence, the 
inevitable loss of quantum information owing 
to coupling to undesired degrees of freedom, 
and secure enough time to allow complex 
manipulations. In their roughly 10 years of 
existence, the coherence time of supercon-
ducting qubits has increased by a factor of 
almost 1,000 (from just nanoseconds to a few 
microseconds), but further improvements will 

Figure 2 | Circuit QED devices. a, Schematic representation (adapted 
from ref. 22) of the circuit analogue of cavity quantum electrodynamics 
(QED), where a superconducting qubit (green) interacts with the electric 
fields (pink) in a transmission line (blue), consisting of a central conductor 
and two ground planes on either side. The cavity is defined by two gaps 
(the mirrors) separated by about a wavelength. The cavity and qubit are 
measured by sending microwave signals down the cable on one side of 
the cavity and collecting the transmitted microwaves on the output side. 

b, Micrograph of an actual circuit QED device that achieves the strong-
coupling limit. It consists of a superconducting niobium transmission line 
on a sapphire substrate with two qubits (green boxes) on either side. The 
inset shows one of the superconducting Cooper-pair box charge qubits 
located at the ends of the cavity where the electric fields are maximal. The 
qubit has two aluminium ‘islands’ connected by a small Josephson junction. 
Changing the state of the qubit corresponds to moving a pair of electrons 
from the bottom to top (shown schematically).
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Figure 1.3: Schematic representation of a circuit QED system. A Cooper pair box
atom is located at the center of the transmission line. [19]

In circuit QED, a superconducting device, such as a quantum two-level system (qubit)

is placed inside an on-chip high-Q microwave cavity, as shown in Fig. 1.3. The su-

perconducting microwave cavity can be implemented by a one-dimensional transmission

line resonator, in which the photons are confined and can only travel along the center

conducting wire, like signals in a TV coaxial cable. Gaps in the wire are in this case

“the mirrors” that define the boundary of the cavity.

The key feature of this implementation is the very tight lateral confinement of both

the photons and the artificial atom in the on-chip cavity, making ultra-strong coupling

between them much easier to reach than its cavity QED counterpart. In addition, the

losses in the superconducting wire are so low that a photon can bounce between the

mirrors for as many as a million times before it escapes or is absorbed. The simple

transmission line geometry also makes the coupling between the cavity and the outside
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world easy to adjust and control, thus becoming a promising candidate for solving the

problem posed at the end of Section 1.3. The details of the circuit QED are discussed

in Chapter 2.

1.6 Dissertation Overview

Although this dissertation has an ambitious title, I have to warn the reader that an

exhaustive investigation of the cavity-embedded-cooper pair transistor (cCPT), is by

no means to close to finished. I expect that this dissertation to be only a starting

point of a series of cCPT experiments carried out in the Rimberg group at Dartmouth

and beyond. This dissertation could serve as a reference for future investigations. An

outline of this dissertation is as follows: Chapter 2 introduces the transmission line

model of the circuit QED architecture and a reliable physical realization of this model,

i.e. the coplanar waveguide resonator. Chapter 3 presents a technique essential for

the development of the cCPT, namely, applying a dc bias to the center conductor of a

high-Q superconducting microwave cavity without significantly disturbing selected cav-

ity modes. Chapter 4 reviews another building block of the cCPT, i.e. the Josepshon

junction and its well-known effects. From such junctions, the Cooper pair transistor

(CPT) is made and ultimately becomes the cCPT when embedded into the dc-biased

circuit QED architecture. Chapter 5 discusses the design and fabrication process of

the cCPT devices, including techniques that are indispensable to nanotechnology and

low-temperature experiments. Chapter 6 describes a variety of cryogenic and measure-

ment setups related to the experiments as well as quantum state reconstruction used to

12
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characterize the cCPT emission fields. Chapter 7 is the core of this dissertation, where

various aspects of measurement and reconstruction results of the cCPT experiments and

their implications on quantum dynamics in a strongly nonlinear system are discussed.

A brief conclusion of this dissertation is offered at the end of of Chapter 7 .

13



Chapter 2

Circuit Quantum

Electrodynamics

The circuit QED architecture was originally proposed by the Schoelkopf group at Yale

University in 2004 [23]. Soon after that, they experimentally demonstrated that a super-

conducting qubit can be strongly and coherently coupled to a single microwave photon

[20]. This possibility of investigating superconducting qubits has lead to a wide range

of novel quantum information and quantum optics experiments in the circuit QED ar-

chitecture [24–29]. More recently, this versatile architecture has also been successfully

employed for study of quantum dots [30, 31], electron-spin ensembles [32] and nano

mechanical resonators [33, 34].

Given the versatility of the circuit QED architecture and the explosion of new results at

14
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the intersection of condensed matter and atomic physics it has engendered, a compre-

hensive review of the architecture is beyond the scope of this dissertation. Nevertheless,

this chapter introduces the basic model and the building blocks of the architecture. It

can serve as a baseline for understanding and implementing the architecture.

2.1 Transmission Line Resonator

The microwave regime refers to frequencies between 300 MHz and 300 GHz, or cor-

responding wavelengths between λ = c/f = 1 m and λ = 1 mm. Because of the

relatively short wavelengths, it is difficult to realize ideal lumped element circuits in this

frequency regime. Instead, a transmission line resonator can be implemented as a mi-

crowave cavity. Compared with lumped element circuits, a transmission line resonator is

a distributed circuit with voltages and currents varying in magnitude and phase over its

length. It avoids uncontrolled stray capacitance and inductances, which allows for better

microwave performance. In addition, the one dimensional transmission line resonator

has some similarities to a lumped element circuit and thus can be modeled as an LCR

circuit. The discussion in this section follows Chapter 2 and 3 in Pozar[35].

2.1.1 Parallel LCR Resonant Circuit

Starting with a canonical parallel LCR circuit shown in Fig. 2.1(a), the input impedance

for the circuit is given by

Zin = (
1

R
+

1

iωL
+ iωC)−1. (2.1)
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Figure 2.1: (a) A parallel LCR circuit. (b) A transmission line terminated in ZL.

At the resonant frequency, ω0 = 1/
√
LC, the input impedance is purely real: Zin = R.

Near resonance (∆ω/ω � 1), our main regime of interest, Eq.(2.1) can be expanded in

∆ω = ω − ω0 to the first order,

Zin ≈
R

1 + 2iQ∆ω/ω
(2.2)

where the quality factor of the resonant circuit is Q = ω0RC. From Eq.(2.2), it is clear

that the input impedance for the parallel circuit is sharply peaked at resonance, and its

maximum value is given by R.

2.1.2 Transmission Line Resonator as LCR Circuit

Now we focus on the transmission line as in Fig. 2.1(b). The effective input impedance

of a lossy transmission line with characteristic impedance Z0, terminated in a load ZL

at a distance l is

Zin = Z0
ZL + Z0 tanh γl

Z0 + ZL tanh γl
(2.3)

16



Chapter 2. Circuit Quantum Electrodynamics

where γ = α + iβ, α is the attenuation constant, and β = 2π/λ is the propagation

constant of the line.

We are mostly interested in transmission lines terminated by nearly open or ideally open

circuits (ZL =∞). In this case,

Zin = Z0 coth γl = Z0
1 + i tanβl tanhαl

tanhαl + i tanβl
. (2.4)

Considering a transmission line with a full wavelength at the resonant frequency ω0, we

have the length l = λ = 2πv/ω0, where v = 1/
√
LlCl is the phase velocity and Ll, Cl

are the inductance and capacitance per unit length of the transmission line respectively.

Again let ω = ω0 + ∆ω, (∆ω/ω � 1). We have

βl =
ωl

v
=
ω0l + ∆ωl

v
= 2π +

2π∆ω

ω0
(2.5)

and

tanβl = tan 2π
∆ω

ω0
≈ 2π

∆ω

ω0
. (2.6)

In practice, most transmission lines, superconducting lines in particular, have a very low

loss, hence we can assume that αl � 1, and thus tanhαl ≈ αl. Applying these results

17
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to Eq.(2.4) gives,

Zin ≈
Z0

αl + i2π∆ω
ω0

=
Z0/αl

1 + 2i( π
ω0Z0

)(Z0
αl )∆ω

. (2.7)

Comparing with the input impedance of a parallel resonant circuit given by Eq.(2.2),

it is easy to see that an open-circuited full-wave transmission line resonator looks very

much like a parallel LCR resonant circuit for which,

C =
π

ω0Z0
, R =

Z0

αl
. (2.8)

We also find that

L =
1

ω2
0C

, Q = ω0RC =
π

αl
. (2.9)

Using the relation ω0 = 2πv/l = 2π
l
√
LlCl

, we can then express L and C in terms of Ll

and Cl as

C =
Cll

2
, L =

Lll

2π2
. (2.10)

The LCR model of the transmission line resonator presents an intuitive means of under-

standing the resonator properties. Its input impedance |Zin| should be sharply peaked

near resonance, with a maximum value given by Z0/αl = Z0Q/π and a bandwidth given

by ω0/Q. The LCR model also simplifies analyzing the effect of coupling the resonator

to input and output lines as discussed in the next subsection.
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2.1.3 Capacitively Coupled Transmission Line Resonator

A perfectly isolated transmission line resonator is only a mathematical model and is of

no practical use. It has to be somehow coupled to the outside world and yet without

losing its high loaded quality factor QL, the key property one wants to take advantage

of for implementing such a resonator. In practice, it is most often coupled to input and

output lines via small capacitors, whose values can be accurately estimated and reliably

engineered. The input and output capacitors acts like two face-to-face mirrors, reflecting

the photons inside the cavity back and forth for a large number of times, before any of

them can escape through either of the mirrors.

For simplicity, the input and output coupling capacitors are assumed to be identical and

small, i.e. Cint = Cout = Cκ, and we stick to our focus around the full wave resonance

ω0. Once we understand this simplest scenario, the case for asymmetric couplings and

higher harmonics will be straightforward.

To analyze the effect of the series connections of capacitors Cκ and typical loaded

impedance ZL = RL = 50Ω, we can transform the circuit as in Fig. 2.2(a) into a Norton

equivalent circuit [36, 37] with parallel connections of resistors R∗ and capacitors C∗ as

illustrated in Fig. 2.2(b) with

R∗ =
1 +R2

LC
2
κω

2
0

RLC2
κω

2
0

(2.11)

C∗ =
Cκ

1 +R2
LC

2
κω

2
0

. (2.12)
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Figure 2.2: (a) Effective parallel LCR model of transmission line resonator coupled
with symmetric input/output capacitors. (b) Norton equivalent circuit of (a).

The transformed circuit is still essentially a parallel LCR circuit and therefore the loaded

quality factor QL is given by

QL = ω∗0
C + 2C∗

1/R+ 2/R∗
(2.13)

≈ ω0
C

1/R+ 2/R∗
(2.14)

where

ω∗0 =
1√

L(C + 2C∗)
(2.15)
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which indicates that the modified resonant frequency ω∗0 is slightly pulled down by each

coupling capacitor.

Eq. (2.14) is derived using the assumption that RLCκω0 � 1 and Cκ � C, which

indicates R∗ ≈ 1/RLC
2
κω

2
0 and C∗ ≈ Cκ � C. Hence to the first order, ω∗0 ≈ ω0 and

C ≈ C + 2C∗. For small capacitors, the frequency shift induced by coupling can often

be neglected.

To better understand the effects of external couplings and internal loss on the loaded

quality factor QL, Eq. (2.14) can be transformed to

1

QL
=

1

Qint
+

1

Qext
(2.16)

where the external quality factor is

Qext = ω0CR
∗ (2.17)

and the internal quality factor is the same as the quality factor of an open-circuited

transmission line resonator as in Eq. (2.9),

Qint = ω0CRint =
π

αl
. (2.18)

This confirms the idea that the loaded QL depends on both the internal quality factor

Qint, and its capacitive coupling to the input and output lines.
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There are two possible regimes for capacitive coupling of the resonator. When Cκ is

very small, the effect of Qext on QL is negligible, QL ≈ Qint, and the resonator is in the

undercoupled regime. These resonators with large quality factors can be used to store

photons in the cavity on a long time scale. On the other hand, the resonator can be

overcoupled when Cκ is relatively large and then QL is governed by Qext, QL ≈ Qext ≈

C/2ω0RLC
2
κ, whose value is reliably controlled by the coupling capacitors. It is then

convienient to engineer the QL for performing fast measurement of the cavity state [20].

Another measurable transmission quantity that demonstrates the competition between

the internal and external Qs is, the insertion loss L0, i.e. the deviation of peak trans-

mission from unity. It is defined as [37]

L0 = −20 log(
g

g + 1
) dB (2.19)

where g = Qint/Qext is the coupling coefficient of the resonator. In the undercoupled

regime where Cκ is small, g > 1 and L0 is significantly greater than zero. This makes

sense in that for small coupling capacitors, it is difficult for the photons inside the

cavity to escape via the capacitors and some photons are thus lost to other internal

dissipation, making the number of the transmitted photons significantly less than the

number of incoming ones. On the other hand, in the overcoupled regime where Cκ is

large, g � 1, L0 ≈ 0 and nearly all photons entering the cavity are able to escape

through the capacitors. One must be aware of the existence of the insertion loss, when

calibrating the gains and losses of the whole microwave transmission setup.
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2.2 Coplanar Waveguide (CPW) Resonator

The coplanar waveguide (CPW) geometry is chosen to realize the transmission line res-

onator for several reasons. First, CPW has its ground on the same plane with the center

conductor, separated by gaps as in Fig. 2.3. This simple single-sided geometry is ideal

for surface mounted components, such as a Cooper pair box or transistor. Second, we

can easily control the lateral scales of the center conductors and gaps from microme-

ters to millimeters while keeping the impedance constant. The small lateral dimensions

indicate large electromagnetic fields are well constrained within the gaps thus enabling

ultra-strong coupling between the cavity and the device placed in the gaps. Meanwhile,

millimeter dimensions also facilitate integration with printed circuit boards. Last but

not the least, CPW resonators with loaded Qs in a wide range from ∼ 102 to ∼ 106 have

been readily realized [36, 37].

2.2.1 Geometry

As illustrated in Fig. 2.3, the length l of CPW is defined by capacitors at both ends.

The the resonant frequency f0 of a full-wave CPW is given by

f0 =
c

λ
√
εeff

=
c

l
√
εeff

(2.20)

with the phase velocity v = c/
√
εeff .
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Figure 2.3: (a) Top view of a CPW resonator with a gap capacitor. (b) Cross section
of a CPW resonator with a backing ground.

Here the the relative effective dielectric constant εeff and the impedance of the CPW

are controlled by its dimensions [38],

εeff =
1 + εrK̃

1 + K̃
(2.21)

Z0 =
60π
√
εeff

(
K(k)

K(k′)
+
K(k1)

K(k′1)

)−1

(2.22)

where K denotes the complete elliptic integral of the first kind with

K̃ =
K(k′)K(k1)

K(k)K(k′1)
(2.23)

k =
a

b
(2.24)

k′ =
√

1− k2 (2.25)

k1 =
tanh(πa4h )

tanh(πb4h)
(2.26)
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k′1 =
√

1− k2
1 (2.27)

and εr is the relative dielectric constant of the substrate with height h, center conductor

width a, gap width s, and separation of the ground planes b = 2s + a. The ground

plane should extend a distance greater than 5b on each side of the gap in order for the

above equations to be a proper model of the distributed circuit. The inductance and

capacitance per unit length can also be calculated [39] from

Ll =
µ0

4

K(k′0)

K(k0)
(2.28)

Cl = 4ε0εeff
K(k0)

K(k′0)
(2.29)

where the permeability constant µ0, also known as the permeability of free space, is

µ0 = 4π · 10−7H/m.

2.2.2 Kinetic Inductance in Superconducting CPW

Another factor that could play a important role in calculating the resonant frequency

of superconducting resonators is kinetic inductance. In a normal metal and at low

frequencies, the kinetic energy of electrons dissipates quickly into the metal through

collisions, so it does not need to be taken into consideration when calculating inductance.

However, in superconductors, the kinetic energy of the moving Cooper pairs in an ac

field, is equivalent to a series inductance, and is known as the kinetic inductance.
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Thus the total inductance per unit length of a superconductor consists of the magnetic

(geometric) inductance and kinetic inductances, Ll = Lm + LK . LK is proportional

to λ2
L/A [39], where A = at is the cross sectional area of the center conductor as in

Fig. 2.3 and λL is the London penetration depth of the thin film, which characterizes

the distance a magnetic field penetrates into the superconducting film[40]. The kinetic

inductance becomes a dominant part in total inductance when the film thickness is

less than its London penetration depth. Fortunately, in our case, we use aluminum or

niobium films, which have a relatively short London penetration depth, i.e. 16 nm and

39 nm respectively [41]. So as long as we deposit a film thicker than 100nm and have the

center conductor width a = 10µm, the fraction of the total inductance attributing to

the kinetic inductance LK/Ll is estimated and experimentally verified to be ∼ 1%−10%

[21, 36, 42]. Since the resonant frequency f0 ∝ 1/
√
L, the resulting downward shift in

the resonance is less than 5%.

2.2.3 Losses in CPW

Conventional coplanar waveguide resonators have three types of intrinsic losses: dielec-

tric, resistive, and radiative. Among these, the dielectric loss is generally believed to be

the limiting factor [37, 42] for the internal Q of superconducting resonators. Neverthe-

less, if one uses a low-loss dielectric substrate, such high-resistivity silicon and sapphire,

a Q as high as ∼ 106 can still be readily achieved. Also, most of the experiments in

this dissertation are conducted in the overcoupled regime of the resonators so that the

dielectric is not a major concern.
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Another possible loss mechanism in superconducting thin films is dissipation due to the

trapping of magnetic vortices. In sufficiently large magnetic magnetic fields, trapped flux

exists in the form of vortices for both Type I (e.g. aluminum) and Type II (e.g. niobium)

superconducting thin films [40] . This contributes additional loss to the resonator and

can result in potentially substantial reduction in Q.

The loss associated with vortices depends strongly on sample preparation and geometry.

For a simple superconducting strip with width w, there exist a threshold field Bm [43, 44],

below which all the magnetic flux is expelled from the strip and the Meissner effect is

complete. This threshold field has also been experimentally demonstrated to scale as

Bm ∼ Φ0/w
2 [43], where Φ0 = h/2e is the flux quantum. For a 12µm wide Al strip and

a 10µm wide Nb strip, the threshold fields have been measured to be about 20µT [44]

and 62 µT [43], respectively.

In all the experiments performed in this dissertation, no external magnetic field is ever

applied. However, we still need to take into account Earth’s magnetic field, whose

magnitude at the Earth’s surface ranges from 25 to 65 µT. Located in Hanover, New

Hampshire, our lab has an Earth’s field about 55 µT, due to its relatively high latitude.

So even if we just consider the center conductor of the CPW, which is usually 10µm wide

in our designs, the Earth’s field is larger than the threshold field of Al and very close to

that of Nb. Since the ground planes of the CPW is at the very least hundreds of microns

wide, flux will be trapped into the films for either Al or Nb. Therefore, magnetic shields

have to be installed in order to reduce the ambient field of the samples and thus avoid

substantial reduction in Q. The details of magnetic shielding is discussed in Chapter 5.
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Chapter 3

Introduction of a dc Bias into a

High Q Microwave Cavity

The existing circuit QED architecture has provided the quantum information commu-

nity with great flexibility and control in integrating superconducting quits and other

interesting systems as discussed in previous chapter. Although it is quite versatile as

it is, the ability to apply a dc bias to its center conductor would make it more so. For

instance, a nano mechanical resonator strongly coupled to a quit can also be embedded

within such a cavity to allow the study of decoherence of macroscopic objects [45].

In this chapter1, we demonstrate a potentially very useful technique that builds on the

circuit QED architecture, namely, applying a dc voltage or current bias to the center

1This chapter is adapted from [46]
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conductor of coplanar waveguide cavity without significantly disturbing a particular

cavity mode or degrading the cavity quality factor Q at high frequencies.

3.1 Design

The limitation of the standard architecture is caused by the need to define the cavity

through coupling capacitances at either end [see Subsection 2.1.3]. Direct electrical

contact there would destroy the cavity Q. Wire bonding to the center conductor is also

made prohibitively difficult by its narrow width (typically a few microns) and in any

case would seem likely to have similarly deleterious consequences for the cavity Q.

However, low-impedance dc contact to the interior of a circuit QED cavity is in fact

possible. The dc biasing scheme is shown schematically in Fig. 3.1. We choose the

main transmission line length l to be a full wavelength (l = λ) at the resonant frequency

f = f0. To allow application of a dc bias, two sections of λ/2-long transmission lines are

added to the main full-wave resonator at points a distance λ/4 from either end (marked

with the red dots), forming two “T” junctions. Each of the λ/2 shunt transmission lines

is connected via an inductor L to a dc voltage or current source.

To understand the idea behind this arrangement, we first assume the main full-wave

transmission line is lossless and terminated in an open circuit. The current at the end of

the line is then zero and the voltage is a maximum, making this a high impedance point.

The λ/4 point is then a voltage node (current antinode) and a low impedance point.

From Eq.(2.4), the input impedance of a lossless transmission line terminated in an open
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λ/2

λ/4λ/4 λ/2

dc in dc in

C
in

C
out

L L

FET amplifierω

Port 1

Port 4

Port 2

Port 3

Figure 3.1: Schematic diagram for introduction of a dc bias into a high-Q microwave
cavity of length λ. The red dots are the low impedance points and the black dot is
a high impedance point. A Cooper pair box, transistor, or other structures can be

located at the high impedance point.

circuit is given by Zin = Z0 coth iβl = −iZ0 cotβl. If the length of the line is either λ/4

or 3λ/4, then Zin = 0. Sitting at one of the low impedance points, and looking towards

either end of the transmission line, one sees a short. We want this condition to remain

unchanged by the addition of the dc feed lines; so we want the impedance they present

at the low-impedance point to be as large as possible.

One way to achieve this is to use λ/2 length of transmission line terminated in an

inductor. The reason for using a half-wave transmission line is, from Eq.(2.3), the input

impedance of a lossless transmission line of length l terminated in a load ZL is given by

Zin = Z0
ZL + iZ0 tanhβl

Z0 + iZL tanhβl
(3.1)
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so that if l = λ/2, we have Zin = ZL: a λ/2 length of transmission line has an input

impedance equal to that of its terminating impedance. The inductively terminated λ/2

dc bias lines therefore, present a high impedance iω0L, where ω0 = 2πf0, to the main

transmission line at the resonant frequency f0. A microwave photon approaching the

λ/4 points from the center of the cavity will therefore, still see a short (the λ/4 and 3λ/4

lines to the ends of the cavity) in parallel with a high impedance iω0L (the λ/2 bias

line). To a first order approximation, the bias lines will have no effect on the full-wave

cavity resonance.

In reality, the transmission line is not completely lossless, and the main line is terminated

with small capacitors (on the order of a few fF) leading to 50 Ω rather than an open

circuit. The impedance looking from a low impedance point towards either end of the

line is still small but not identically zero. Reasonable values of inductance L must

ensure the dc feed lines present a sufficiently large impedance to the main line, for the

approximate picture described above to be valid.

While a shorter feed line (much less than λ/2, e.g. λ/10) can also work, the terminating

impedance is transformed in a less understandable way and maybe harder to implement.

In contrast, using a λ/2 feed line, the T junctions in our design are easy to understand;

they are essentially the conventional bias tees applied to a distributed element circuit.
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3.2 Device and Measurement Setup

Fig. 3.2 shows a Nb CPW resonator with dc feed lines. The CPW center conductor

width is 10 µm and its separation from the ground planes is 5.5 µm, giving a wave

impedance of approximately 50 Ω. It is fabricated from a 100 nm thick Nb film on a

10.5× 5.5 mm2 high resistivity silicon substrate using sputtering, photolithography and

dry etching, with an overall length l = 24 mm, giving f0 ≈ 4.8 GHz. The resonator

is coupled via identical capacitors Cin = Cout = Cκ at each end to input and output

microwave lines. Two coupling capacitors with different geometries are used to test the

cavity design, namely, 4-finger (Cκ ≈ 4.5 fF) and 8-finger (Cκ ≈ 11.1 fF) capacitors.

A 3-turn spiral inductor (linewidth of 5 µm, spacing of 10 µm, L ≈ 6 nH) is used to

terminate the λ/2 shunt transmission lines.

L L

C
in

C
out

1 mm

Port 1

Port 2

Port 3Port 4

Figure 3.2: Optical micrograph of a 4.8 GHz superconducting niobium CPW res-
onator with dc feed lines. The insets show an 8-finger coupling capacitor and a 3-turn

spiral inductor.

32



Chapter 3. Introduction of a dc Bias into a High Q Microwave Cavity

Using a signal generator and a spectrum analyzer, transmission measurements of res-

onators A and B (with 4- and 8-finger coupling capacitors, respectively) were performed

at 4.2 K in a Helium dunker with an Amumetal 4K magnetic shield. A room tempera-

ture field-effect transistor (FET) amplifier (gain ∼45 dB at around 5 GHz) was used to

amplify the signal prior to measurement by the spectrum analyzer. Losses in the cables

(roughly 13 dB in each) leading to and from the sample were carefully measured and

accounted for in the transmission measurements, and additional cold attenuation was

not used. For all measurements unused ports were terminated by a 50 Ω impedance.

3.3 Characterization of Cavity Transmission

To estimate the intrinsic Q of Nb films at 4.2 K, we also fabricate a bare resonator C

with symmetric 10 µm gap input/output capacitors and without the presence of the dc

feed lines. Its transmission spectrum S21 is shown in Fig. 3.3, in which we can clearly

see a sharp resonant peak at f0 =4.864 GHz. The loaded quality factor QL = f0/δf is

obtained by curve fitting a Lorentzian line shape:

S = A
δf

(f − f0)2 + δf2/4
+A0 (3.2)

where δf is the full width half maximum of the resonance.

The loaded QL of resonator C is thus determined to be QL = 6075 by fitting a more

finely sampled transmission spectrum around f0. Since the 10 µm gap capacitor has

a relatively small capacitance Cκ ≈ 0.42 fF, and from Eq. (2.12), we get the coupling
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Figure 3.3: Measured transmission spectrum S21 of the bare resonator C without
the dc feed lines.

Qext ≈ 3.7×106 at the resonant frequency and the resonator is well in the undercoupled

regime. A intrinsic Q ≈ 6100 is therefore estimated from Eq. (2.16). It is likely limited

by losses in the Nb films at relatively high temperature (4.2K) of the measurements.

We now proceed to characterize the microwave performance of the system with bias

lines. We measure transmitted power from the input port (Port 1) through the output

port (Port 2) via coupling capacitors as well as power through spiral inductors (Port 3

and 4). Fig. 3.4(a) shows measured S-matrix parameters S21, S31 and S41 of resonator

A from 2 GHz to 6 GHz. Due to the presence of dc feed lines, the fundamental λ/2

resonance around 2.4 GHz is strongly damped and is not visible in S21. This is to be

expected since for the fundamental resonance, the bias lines are not located at a low
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impedance point. In contrast, the first harmonic at 4.8 GHz corresponding to a full-

wave excitation still exists as predicted by the simple impedance-based argument above.

Futhermore, additional broad resonance are visible at around 3.6 GHz in S21, S31 and

S41, as well as more weakly in S41 at about 3.2 GHz.
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Figure 3.4: (a) Measured and (b) simulated transmission spectra S21 (solid), S31

(dotted) and S41 (dashed) of resonator A from 2 GHz to 6 GHz. (c) Measured and (d)
simulated transmission spectra S21 (solid), S31 (dotted) and S41 (dashed) of resonator

B in the immediate vicinity of the full-wave resonance.

3.4 Effect of the Application of a dc Bias

Before discussing additional resonances, we first examine the effect of a dc bias on the

main line full-wave resonance. We determine the quality factors of the resonances by
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Figure 3.5: Measured transmission spectra S21 of (a) resonator A and (b) resonator
B under different bias conditions. Insets: Lorentzian curve fits (blue curve) to the data
points (red circles) when no dc bias is applied. To show the curve fits clearly, the

density of data points displayed in the insets has been reduced by a factor of 4.
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fitting the S21 spectra to a Lorentzian line shape [Eq. (3.2)], as shown in the insets

of Figs. 3.5(a) and 3.5(b). The data are clearly well described by Lorentzians with

center frequencies of around 4.8 GHz and quality factors determined from the curve

fits of QA = 2500 and QB = 3750. These values agree reasonably well with the total Q

expected from the intrinsicQ and the loading due to coupling capacitors [as in Subsection

2.1.3]. The addition of dc feed line structure therefore, does not have a significant effect

on the Q of the first harmonic mode at the temperature (4.2 K) of our measurements.

Finally, we apply a 1V dc voltage bias or 1mA dc current bias to the center conductor

of the resonators via the bias lines. The resulting transmission S21 spectra are nearly

unperturbed by the dc bias, as shown in Figs. 3.5(a) and 3.5(b). The quality factors

of the resonators as determined by fits to a Lorentzian line shape degrade by less than

1% under application of dc bias. We conclude that the application of dc bias does not

significantly disturb the first harmonic cavity mode, as expected for our design.

3.5 Discussions

To investigate the origin of the additional resonances at 3.2 and 3.6 GHz, we simulated

the transmission spectra of the resonators using Microwave Office [47], as shown in Fig.

3.4(b). The loss tangent of the Nb film tan δ = 1.6× 10−4 was chosen to agree with the

intrinsic Q of the bare resonator C. We take the dielectric constant of the Si substrate

to be ε = 11.9. An effective length for the resonator leff ≈ 1.04l was also chosen to

give the best agreement between the measured resonant frequencies for both resonators
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A and B. This fitting procedure accounts for small (∼ 4%) discrepancies between the

measured and predicted resonant frequencies that are likely due in part to the effects of

the kinetic inductance of the Nb film [as discussed in Subsection 2.2.2]. The simulations

show good agreement with experimental data for resonators A in Fig. 3.4(b). The full-

wave resonance of the main line at 4.8 GHz in Fig. 3.4(a) appears smaller than theory

[as in Fig. 3.4(b)] due to the relatively coarse sampling used in the measurement.

The broad resonances at 3.2 and 3.6 GHz are also clearly reproduced in the simulations.

Comparison between the simulations and data allows us to identify these resonances as

arising from the fundamental resonance of the 3λ/4 length of CPW between port 1 and

port 4, and from the first harmonic resonance of the 5λ/4 length of CPW between port

1 and port 3, respectively [see Fig. 3.1]. The resonant frequency of the 5λ/4 section of

CPW is pulled downward significantly by the reactance of the λ/4 section of transmission

line [35] from the second bias line to the output at port 2.

To more carefully study the characteristics of the resonators near the full-wave resonance

we measured and simulated the same S parameters over a much narrower frequency range

immediately around f0, as shown in Figs. 3.4(c) and 3.4(d) for resonator B; agreement

between the measurements and simulations is excellent. The resonance in S21 for the

main line has a narrow Lorentzian line shape as mentioned above. Transmission through

the dc bias lines as shown in Fig. 3.4(c) for S31 and S41 displays more complex behavior.

These resonances are well described by the Fano line shape [48], which generically results

from mixing between a discrete state and a continuum. In our case, the continuum arises

from the tails of the broad resonances associated with the dc bias lines while the discrete

38



Chapter 3. Introduction of a dc Bias into a High Q Microwave Cavity

state is the narrow full-wave resonance of the main line. When a photon is transmitted

to one of the dc bias lines it may either couple directly to the bias line, or first couple to

the main resonance and then to the bias line. Interference between these two pathways

is destructive on one side of the main resonance and constructive on the other, leading

to the characteristic Fano line shape.

This analysis suggests an alternative interpretation of the operation of the dc-biased

cavity. The dc bias line are in fact additional microwave resonators whose resonant

frequencies are far from that of the main line. The bias line resonators necessarily have

a low Q due to their strong dc coupling to the measurement circuitry; as a result, their

resonances still have significant weight a the frequency f0 of the main resonance. Mixing

with the sharp main line resonance occurs at f0, allowing some fraction of the photons

in the main line to escape via the bias lines. Nonetheless, the mixing is relatively weak;

as can be seen in Figs. 3.4(c) and 3.4(d), the peak values of S31 and S41 at f0 are about

13 dB less than that of S21, indicating that less than 2.5% of the input power escapes

through the dc bias lines. Coupling to the bias lines can be further weakened by using

a larger terminating inductance L, which increases the bias line Q and narrows their

resonances. For instance, using L = 20 nH increases the bias line isolation to roughly

20 dB.
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3.6 Conclusion

The ability to introduce a dc bias into a high-Q superconducting microwave cavity is an

important addition to the circuit QED architecture. With dc access to the cavity, highly

non-linear devices can be developed by embedding current- or voltage-biased Josephson

structures such as superconducting quantum interference devices (SQUIDs) or Cooper

pair transistors (CPT) in the cavity. The dc-biased cavity may also serve as a general

platform allowing very strong coupling between the cavity and a variety of quantum

systems. Indeed, the dc current and voltage biased applied above are sufficiently large

to achieve strong coupling between a nanomechanical resonator and qubits embedded

in such a cavity [45].
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Chapter 4

The Cavity-Embedded-Cooper

Pair Transistor

Since the 1990s, a great interest has been raised in single charge tunneling effects in

systems with small junctions at low temperatures [49]. Among these systems, the single

electron transistor (SET), hereafter called the single Cooper pair transistor (CPT), is

one of the simplest and most extensively studied devices.

In this dissertation, we focus on the supercurrent regime of the superconducting CPT,

where Cooper pairs are the dominant charge carriers. The SET is more commonly

referred to, when one discusses the normal state SET or superconducting SET in higher

bias regime, where charge carriers such as quasiparticles are involved.
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4.1 Josephson Junction, Josephson Effects & Inductance

A superconducting tunnel junction, also known as a Josephson junction (JJ) [50, 51] ,

refers to two superconducting electrodes separated by a thin insulating barrier [see Fig.

4.1)(a)], or more generally, a weak link [40]. It is the only non-linear and non-dissipative

quantum circuit element at arbitrarily low temperature [18]. The discussion in Sections

4.1 and 4.4 follow that in Tinkham [40].

(a)
Superconducting

Electrode

Tunnel Oxide

Layer

(b)

C
J

E
J  

,
 
C

J

E
J

Figure 4.1: (a) A superconductor-insulator-superconductor (SIS) Josephson junction.
(b) Schematic representation of a Josephson junction, in which the Josephson element

is represented by a cross.

In 1962, Josephson [50, 51] predicted that at a zero bias voltage, a supercurrent

Is = Ic sinϕ (4.1)

should flow through the Josephson junction, known as dc Josephson effect. Here ϕ is

the phase difference of the two electrodes and Ic is the critical current of the tunnel

junction. He also predicted that if a bias voltage is applied across the junction, the time
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derivative of the phase difference is determined by,

ϕ̇ =
2e

~
VJJ . (4.2)

The supercurrent thus would be an alternating current with amplitude Ic and frequency

f = 2eV/h. It also indicates that a Cooper pair tunnels through the junction in each

period using the energy quantum hf . Eq.(4.2), known as ac Josephson effect, arises

from the very basics of quantum mechanics and is therefore a direct consequence of the

coherence of Cooper pair tunneling.

Using Eq.(4.1) and (4.2), one can compute the energy stored in the junction by inte-

grating the external electrical work,

E =

∫
IsV dt =

∫
Ic sinϕdϕ = −EJ cosϕ+ const. (4.3)

where EJ ≡ ~Ic/2e is defined as the Josephson energy. This suggests that EJ or Ic can

be treated as a measure of the coupling strength of the superconducting electrodes. Ic

scales proportionally to the area of the tunnel layer and decreases exponentially with

the tunnel layer thickness.

Energy storage and conservation suggest that, a Josephson junction can be considered

as having a nonlinear reactance, inductive or capacitive, depending on the observation

point of the whole circuit. Generally speaking, the inductance of a electrical element
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can be defined as

L =
Φ(t)

I(t)
(4.4)

where the magnetic flux Φ(t) = (Φ0/2π)ϕ(t), and Φ0 = h/2e is the flux quantum. For

elements that do not form a loop, the branch flux can be defined as Φ(t) =
∫ t
−∞ V (s)

ds, where V (s) is the space integral of the electric field along a current line inside the

element [18]. Hence, the Josephon inductance of a JJ is

LJ(ϕ) = (
dI

dΦ
)−1 =

~
2eIc cosϕ

=
LJ

cosϕ
(4.5)

where LJ = ~/2eIc. For small signals, a single JJ thus behaves as a phase-dependent

nonlinear inductor in parallel with the capacitance formed by the two overlapping films

of the junction, as shown in Fig. 4.1(b). In fact, the Josephson inductance arises from

the inertia of Cooper pairs tunneling across the junction, which is essentially the kinetic

inductance, as discussed in Subsetion 2.2.2.

4.2 Cooper Pair Transistor (CPT)

A Cooper pair transistor (CPT) consists of two ultra small Josephson junctions con-

nected in series and a small island in between, usually with a gate electrode capacitively

coupled to the island, as illustrated in Fig. 4.2.

The CPT can also be considered as a split Cooper pair box (CPB) [52], whose JJs do not

form a superconducting loop but are rather connected to an external circuit. The CPB
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is widely used as a superconducting charge qubit in quantum computing applications

[21]. Even though this dissertation focuses on the physics of the CPT not its direct

application in general, the insights gained from the CPB are still very helpful for our

study of the CPT.
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Figure 4.2: Schematics of the Cooper Pair Transistor.

To observe single Cooper pair tunneling effects, two requirements need to be met. First,

the Coulomb charging energy of a single Cooper pair, ECJ = (2e)2/2CΣ = 2e2/CΣ, must

be significantly larger than the thermal fluctuations at ambient temperature T ,

ECJ = 2e2/CΣ � kBT (4.6)

where CΣ = C1 + C2 + Cg is the total capacitance of the island. This requires that

CΣ � 40 fF at T ≈ 0.1 K, which explains why we need to fabricate ultra small junctions

and cool the device to low temperatures.
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Second, the normal resistance RT of a tunneling junction must be greater than the

quantum resistance for a Cooper pair RQ = RK/4 = h/4e2, that is

RT > h/4e2 ≈ 6.5 kΩ. (4.7)

This is because the Coulomb charging energy of a Cooper pair Ecp must exceed the

quantum energy uncertainty ∆E ≥ h/τ ≈ h/RTCΣ associated with the charge lifetime

due to Cooper pair tunneling τ = RTCΣ. Eq.(4.7) ensures that the wave function of the

excess Cooper pair is localized on the island.

In practice, aluminum is the most commonly chosen material for fabricating supercon-

ducting JJs. It is often said that aluminum is to superconducting circuits what silicon

is to conventional MOSFET circuits [18]. A sandwich structure of Al/AlOx/Al is usu-

ally made by the double-angle shadow evaporation. The naturally grown high quality

aluminum oxide layer (thickness ∼ 1 nm) acts as the insulating tunneling barrier. The

capacitance of the tunneling junctions make up for the most part of the capacitance of

the island. Below the critical temperature of Al (1.2 K), the source and drain electrodes

as well as the island are superconducting.

As discussed in Section 4.1, besides the charging energy Ec and the thermal energy kBT ,

another two energy scales, i.e. Josephson energy EJ and the superconducting energy gap

∆, also come into play for superconducting Josephson junctions. In fact, EJ is related
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to ∆ by the Ambegaokar-Baratoff relation [53],

EJ =
h∆

8e2RT
(4.8)

where RT is the normal resistance of the CPT.

If EJ � ECJ , the phase difference ϕ across the CPT is well defined and the number of

Cooper pairs N on the island undergoes large fluctuations. If instead ECJ � EJ , the

number of Cooper pairs on the island is well defined, and the system is governed by the

charging energy of the island. In this dissertation, we are most interested in the regime

EJ < ECJ < ∆, where the number N is still well defined, while Cooper pair tunneling

is maximized at the same time. Under the above condition that EJ < ECJ < ∆ and

Eqs. (4.6) (4.7), the CPT is in the well-knowned Coulomb blockade regime.

4.3 Transport in CPT

4.3.1 Tunneling Process in Single Josephson Junction

Although we are primarily concerned with Cooper pair tunneling in this dissertation, to

get a bigger picture it is still worth mentioning other tunneling mechanisms.

Let’s start with a single superconductor-insulator-superconductor (SIS) junction. It is

convenient to treat the superconductor using semiconductor model [40], in which the su-

perconductor is represented by an ordinary semiconductor with a density of independent-

particle energy states, as shown in Fig. 4.3.
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(a) (b)

2∆ 2∆
eV
b

Figure 4.3: Semiconductor model of an SIS junction. (a) Dissipative quasiparticle
tunneling when eVdc > 2∆. (b) Resonant Cooper pair tunneling when eVdc = 0.

In an SIS junction in general, besides resonant Cooper pair tunneling, quasiparticles can

also tunnel through the barrier. At T = 0, for a bias voltage eVdc > 2∆, where 2∆ is the

superconducting energy gap of the electrodes, the minimum energy to break a Cooper

pair into two quasiparticles according to the BCS theory. In this case, the transport

process is dominated by dissipative quasiparticle tunneling. On the other hand, for a

bias voltage eVdc < 2∆, no quasiparticle can be created and only resonant Cooper pair

tunneling can cause supercurrent to flow through the junction, if the Fermi energy levels

of the two electrodes are aligned.

4.3.2 Tunneling Process in CPT

In reality, a CPT composed of double SIS junctions is much easier to implement and mea-

sure than a single junction, because the island is well isolated from the low-impedance
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environment by the high resistance and low capacitance double junctions. Fig. 4.4 shows

current features of a CPT over a large range of bias voltage.
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Figure 4.4: A collection of I-V curves of a CPT taken at various gate voltages. It
clearly shows the super current peaks and JQP peaks. DJQP peaks are not present

due to a relatively small charging energy: Ec <
2
3∆

Depending on the relative sizes of the voltage bias Vdc, the superconducting gap energy

∆ and the charging energy for a single electron Ec = e2/2CΣ, the transport process can

be divided into several regimes. In the above-gap regime, eVdc > 4∆, the transport is

dominated by sequential quasiparticle tunneling, just as for a single SIS junction.

In the sub-gap regime, apart from the supercurrent peaks, there are a number of different

tunneling mechanisms that involve a combination of Cooper pairs and quasiparticles [54].

Two of the most prominent current peaks are the Josephson-quasiparticle cycle (JQP)

[55] and the double Josephson-quasiparticle cycle (DJQP) [56].
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The JQP cycle is a 3-step process, in which a Cooper pair tunnels through one junc-

tion, followed by the subsequent quasiparticle tunneling through the other junction. It

requires that eVdc > Ec + 2∆.

The DJQP cycle is a combination of two Cooper pair tunneling steps interleaved by two

quasiparticle tunneling steps. It is sometimes called the 3e process since three electrons

in total tunnel at each junction. The Cooper pair resonant tunneling condition dictates

that eVdc = 2∆, and to have quasiparticle tunneling to occur at this voltage, another

energy requirement need to be met: Ec >
2
3∆ [54].

The feature we are most interested in is the supercurrent peak, where the bias voltage

is close to zero and the transport is dominated by the resonant Cooper pair tunneling.

As mentioned in the previous subsection, for a bare junction, the resonant tunneling

condition is: 2eVdc = 0. For a double junction CPT, the charging energy needs to be

taken into consideration. Assume that an asymmetrically biased SET [see Fig. 4.2]

has junction J2 grounded (V2 = 0) and a bias voltage Vdc is applied via junction J1

(V1 = Vdc). As far as the voltage across each junction is concerned, the CPT just acts

like a capacitance divider. Using Kirchhoff’s law, one can easily derive the Cooper pair

tunneling condition [54, 57]:

∑
i

κimi eVdc = 2 δmEc(n− ng + δm/2) (4.9)

where m1(2) is the number of electrons tunneling across junction J1(2), δm = m2 −m1,

n is the initial charge state of the island, ng = CgVg/e is the number of offset gate
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charge, and κ1(2) is the fraction of the bias voltage dropped across J1(2). In this case,

κ1 = (C2 + Cg)/CΣ and κ2 = C1/CΣ.

The advantage of working in this regime is, in contrast to quasiparticle tunneling, Cooper

pair tunneling is both coherent and non-dissipative.

4.4 Quantum Mechanics in the Supercurrent Regime

4.4.1 Quantum Mechanics of the Single Josephson Junction

As discussed in Section 4.2, we are working in the regime EJ ≈ ECJ < ∆, where

the number of Cooper pairs N on the island is still well defined, while the coupling

between the island and the leads is maximized. In fact, the quantum uncertainty relation

∆ϕ∆N ≥ 1 modifies the classical theory of the Josephson effects in Section 4.1, where

the phase difference ϕ is treated as a classical variable, implying the implicit assumption

that EJ � ECJ .

Again we start with the simplest case, i.e. an isolated single Josephson Junction with

capacitance C at T = 0. The classical expression for the total energy is

E =
Q2

2C
− EJ cosϕ. (4.10)

The JJ phase difference ϕ is related to the magnetic flux Φ via ϕ = (2π/Φ0)Φ = (2e/~)Φ,

where Φ0 = h/2e is the flux quantum. The operator Φ and Q obey the canonical
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coordinate-momentum commutation relation [Φ, Q] = i~. Hence,

[ϕ,Q] = 2ei. (4.11)

Making the operator replacement Q = 2ei ∂∂ϕ in Eq.(4.10), we get the Hamiltonian for a

single JJ,

H = −4Ec
∂2

∂ϕ2
− EJ cosϕ (4.12)

where Ec = e2/2C. We should keep in mind that this Hamiltonian describes only the

tunneling of Cooper pairs and neglects that of quasiparticles at T → 0.

4.4.2 Quantum Mechanics of the CPT

Now we move on to discuss the CPT in the supercurrent regime [as in Fig. 4.2]. We

denote the Josephson energies of the two junctions by EJ1 and EJ2. The total capaci-

tance of the island CΣ = C1 + C2 + Cg. At zero bias voltage, the energy of the CPT is

given by the Hamiltonian

H = −EJ1 cosϕ1 − EJ2 cosϕ2 +
(Q−Qg)2

2CΣ
(4.13)

where Qg = CgVg = e ng is the gate charge, ϕ1 and ϕ2 are the phase differences across

junctions J1 and J2, respectively.

We define the new variables γ± = (ϕ1 ± ϕ2)/2 [58], where γ+ is the average phase

difference across the double junctions (i.e. the ‘center of mass’, CoM coordinate) and γ−
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is the relative phase of the two junction. In our CPTs, EJ ∼ Ec, so γ+ can be considered

as a semiclassical variable. In contrast, γ− is a quantum variable that describes quantum

fluctuations of the system.

Replacing ϕ1 and ϕ2 in Eq.(4.13) by γ±, we have

H = −EJ(γ+) cos(γ− − χ) +
(Q−Qg)2

2CΣ
(4.14)

where

EJ(γ+) =
√
E2
J1 + E2

J2 + 2EJ1EJ2 cos γ+ (4.15)

and

χ = arctan(
EJ1 − EJ2

EJ1 + EJ2
tan γ+). (4.16)

Since the eigenvalues of the Hamiltonian do not depend on the phase reference χ, we

can drop it and rewrite H as

H = −EJ(γ+) cos(γ−) +
(Q−Qg)2

2CΣ
. (4.17)

Here γ− and Q also obey the commutation relation [γ−, Q] = 2ei. Apart from a semi-

classical gate charge Qg = ng e, this equation is equivalent Eq.(4.12) for a single isolated

JJ. Due to environmental effects, the double JJ system is a more realistic physical sys-

tem to fabricate and measure. Fig. 4.5 shows that for sufficiently small bias voltage

Vdc, the CPT current is 2e periodic (period 69.4 mV in Vg, as opposed to period 34.7

mV in Vg in the quasiparticle regime), as is expected from the Hamiltonian (4.17) in the
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supercurrent regime.
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Figure 4.5: (a) A gate voltage sweep of a CPT at relatively high source-drain (i.e.
quasiparticle regime), which shows a gate voltage period of 34.7 mV. (b) A gate voltage
sweep of a CPT at low bias (i.e. supercurrent regime), which has a gate voltage period

of 69.4 mV.

In Section 4.1, we introduced the Josephson inductance for a single JJ. The inductance

for a double junction CPT can be described similarly. Note that changes of flux and the

system energy E(ϕ, ng) are related by dE = IdΦ, thus the inductance of the system can
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be derived as [59]

LCPT = (
dI

dΦ
)−1 = (

d2E

dΦ2
)
−1

= (
Φ0

2π
)2(

d2E

dϕ2
)
−1

(4.18)

where ϕ = 2γ+ = (2π/Φ0)Φ is the total phase difference across the CPT. The CPT

in the supercurrent regime can therefore be treated as an inductor with a gate-tunable

inductance LCPT (ϕ, ng). Based upon this result, a device called the inductive SET (L-

SET) [60] has been invented as a high sensitivity charge detector, taking advantage of

non-dissipative Cooper pair tunneling.

4.5 The Cavity-Embedded-Cooper Pair Transistor (cCPT)

We now turn to the the cavity-embedded-cooper pair transistor (cCPT), the main fo-

cus of this dissertation. Having demonstrated the dc biasing scheme integrated in the

standard circuit QED architecture in Chapter 3, as well as the basic understanding of

the quantum mechanics of a CPT on its supercurrent branch, we are finally ready to

discuss the cCPT.

We embed the CPT in a dc-biased CPW cavity at at the center of the full-wave resonator,

as illustrated in Fig. 4.6. Located at the central voltage antinode, the CPT enjoys a

strong electric field which facilitates the strong coupling to the cavity. In addition, it has

its source electrode in direct electrical contact with the center conductor and its drain

electrode connected to the ground plane of the CPW.
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Figure 4.6: (a) Schematic diagram of a full-wave dc-biased superconducting CPW
cavity showing the CPT location (black dot) at the center of the main cavity line. (b)
Expanded view of the CPT/cavity connection with a gate line capacitively coupled to

the island of the CPT. The double JJs of the CPT are shown in green.

Due to the ac Josephson effect, we can expect that for a properly chosen bias volt-

age, the CPT will begin to emit photons into the cavity; effectively we will use the ac

Josephson effect to “ring” the cavity up. However, the CPT is also strongly coupled

to the high Q cavity field, so we can not use the usual theory of energy exchange with

the electromagnetic environment (the so-called P (E) theory) to treat the interaction
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between the CPT and the cavity. An implicit assumption in the P (E) theory is that the

environment is in thermal equilibrium, which is certainly not true for the cavity in our

system. A full theoretical treatment must address the CPT/cavity as a single quantum

system (i.e. the cCPT system), and not simply a CPT embedded in an electromagnetic

environment. This use of the quantum transport in a nanoscale structure (the CPT) to

determine the motion of a much larger structure (the cavity) is in many ways similar

to the use of the quantum point contact (QPC) shot noise to “ring up” the crystal in

which it is embedded [61]. The theoretical analysis in this section follows the discussion

in Blencowe et al. [62].

4.5.1 Classical Model of the cCPT

A simplified lumped-element model of the cCPT system is shown in Fig. 4.7. It is

supposed that for a small external dc bias Vdc, the CPT interacts predominantly with a

particular mode of the cavity, with the other modes and their coupling to the environ-

ment modeled as a resistance. Thus the CPW resonator can be modeled as a parallel

LCR circuit [as in Chapter 2], which is in parallel with the CPT. For simplicity and prac-

tical approximation, we assume that the CPT has symmetric double junctions, which

have the same critical current Ic (i.e. same Josephson energy EJ) and same capacitance

CJ . Considering the typical values of our device: Lb ∼ a few nH, L ∼ tenths of nH,

C ∼ a few pF, CJ ∼ 1 pF and Cg ∼ a few aF, we have the size hierarchies Lb � L and

C � CJ � Cg.
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Figure 4.7: Effective lumped-element model of the cCPT system.

Using Kirchhoff’s laws and assuming L � Lb, the classical equations of motion for the

circuit can by derived in terms of the phase difference across each junction:

(C + CJ)ϕ̈1 + Cϕ̈2 +R−1(ϕ̇1 + ϕ̇2) + L−1(ϕ1 + ϕ2 − ϕ10 − ϕ20) =

−2πIc
Φ0

sinϕ1 +
2π

Φ0
L−1
b Vdct (4.19)

and

(C + CJ + Cg)ϕ̈2 + Cϕ̈1 +R−1(ϕ̇1 + ϕ̇2) + L−1(ϕ1 + ϕ2 − ϕ10 − ϕ20) =

−2πIc
Φ0

sinϕ2 +
2π

Φ0
L−1
b Vdct+

2π

Φ0
CgV̇g. (4.20)
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We again define the CoM and relative phase coordinates γ± = (ϕ1 ± ϕ2)/2 and use the

relation C � CJ � Cg, Eqs. (4.19) and (4.20) then become

Cγ̈+ +R−1 ˙γ+ + L−1(γ+ − γ0
+) = −πIc

Φ0
sin γ+ cos γ− +

π

Φ0
L−1
b Vdct (4.21)

and

CJ γ̈− = −2πIc
Φ0

sin γ− cos γ+ −
π

Φ0
CgV̇g. (4.22)

The oscillator frequency on the left hand side of Eq.(4.21) is ω0 = 1/
√
LC and we define

the dimensionless time unit τ = ω0t. Eqs.(4.21) and (4.22) can then be expressed in a

dimensionless form,

γ̈+ +Q−1 ˙γ+ + γ+ − γ0
+ = −f0 sin γ+ cos γ− + ω0

dτ (4.23)

and

ηJ γ̈− = −2f0 sin γ− cos γ+ − ηg ˙̃Vg, (4.24)

where the quality factor is Q = R
√

C
L , the dimensionless ‘force amplitude’ is

f0 = π
LIc
Φ0

, (4.25)

the dimensionless ‘driving frequency’ is

ω0
d =

L

Lb

eVdc

~ω0
, (4.26)
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and ηJ = CJ/C, ηg = Cg/C, Ṽg = eVg/~ω0. Transforming to the ‘shifted’ coordinates

γ̃+ = γ+− γ0
+−ω0

dτ +ω0
d/Q and τ̃ = τ +Q−1, the equations of the motion of the cCPT

system finally become,

γ̈+ +Q−1 ˙γ+ + γ+ = f0 sin (ω0
dτ + γ+) cos γ− (4.27)

and

ηJ γ̈− = 2f0 sin γ− cos (ω0
dτ + γ+)− ηg ˙̃Vg (4.28)

where we have set γ0
+ = π and dropped the tildes except for Ṽg. For small force amplitude

and driving frequencies close to the left side oscillator frequency, ω0
d ∼ 1, Eq.(4.27)

behaves like a driven, damped harmonic oscillator. For typical force amplitude f0 ∼ 0.1

and a Q of several thousand, f0Q� 1 and the system is strongly nonlinear. In addition,

Eq.(4.28) describes the internal phase fluctuations of the CPT. Note that the system

is not described by the Duffing oscillator as discussed in Section 1.1. Instead, both

Eqs.(4.27) and (4.28) have a time dependent drive as a result of the ac Josephson effect

and the drive frequency can be tuned by an external dc bias Vdc. In contrast to most

systems that require an external ac drive, the cCPT system generates it own ac drive

and the strongly nonlinear system self-oscillates.
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Using Eqs.(4.21) and (4.22) and a canonical transformation, the Hamiltonian of the

cCPT system can also be expressed as

H = (
π

Φ0
)2(2C)−1p2

+ + (
Φ0

π
)2(2L)−1γ2

+ + ECJ
(N −Ng)2

− 2EJ cos γ− cos (γ+ + ωdt) (4.29)

where N = p−/~ is the number of Cooper pairs on the island, Ng = ng/2 = CgVg/(2e) is

the gate charge in units of Cooper pairs, ECJ = (2e)2/(2CΣ) ≈ (2e)2/(2 · 2CJ) = e2/CJ

is the approximate Cooper pair charging energy neglecting Cg, and ωd = ω0
d · ω0 =

(L/Lb)(eVdc/~) 1 is the drive frequency due to the dc bias Vdc.

Blencowe et al. [62] demonstrate that the classical dynamics of the CPT phases are

chaotic, as well as aperiodic depending on the initial conditions and the nature and

strengths of the damping/noise forces. Classically the CPT island phase looks like a

very light pendulum attached to a very large mass (the cavity) on a very stiff spring.

4.5.2 Quantum Model of the cCPT

To derive the quantum counterpart of Hamiltonain (4.29), we note that the quantum

commutation relations for the phases are

[N, γ−] = i; [γ+, p+] = i~. (4.30)

1A more recently developed model [63] taking into consideration the distributive nature of the CPW
shows that the effective driving frequency should be ωd = eVdc/~. Nevertheless, the physics implied by
this model is essentially the same as the model discussed in this section.
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Introducing the creation operator a and annihilation operator a+ for the cavity photons,

we have

γ+ =

√
~

2mω0
(a+ a+); p+ =

√
mω0~

2
(a− a+) (4.31)

where the effective ‘mass’ m = C(Φ0/π)2. Thus the size of zero point fluctuations of the

average phase γ+ is

∆zp =

√
~

2mω0
=

√
Z0

RK
≈ 0.04 (4.32)

where Z0 = π
√
L/C ≈ 50 Ω is the characteristic impedance of the cavity transmission

line, and RK = h/e2 ≈ 25.8 kΩ is the resistance quantum given by the von Klitzing

constant. Working in the Cooper pair number state basis of the island |N〉, the quantum

Hamiltonian can be written as

H = ~ω0a
+a+ ECJ

+∞∑
N=−∞

(N −Ng)2 |N〉〈N |

− EJ

+∞∑
N=−∞

(|N + 1〉〈N |+ |N − 1〉〈N |) cos
[
∆zp(a+ a+) + ωdt

]
. (4.33)

This system is reminiscent of several others in which an SET or JJ is embedded in a

cavity or other structured environment [64–66]. These include recent use of an SET as

a “single atom laser” [67] as well as many studies of the effects of electrical resonators

on an embedded SET or JJ [68].

When the dc bias approaches that needed for the drive frequency ωd to be resonant

with the cavity, the Cooper paris in the CPT should begin to emit photons into it. The

resulting cavity field will act back on the CPT, influencing transport through it. We
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expect that the cavity will be strongly driven. A meaningful calculation of the quantum

dynamics requires very careful treatment of the noise sources (such as the CPT gate/bias

lines noise), and requires extremely large computational resources due to the size of the

Hilbert space involved.

Blencowe et al. [62] show that corresponding to the classical chaotic/aperiodic motions,

the quantum dynamics of the driven CPT exhibit such phenomena as dynamical tun-

neling and the generation of nonclassical states from initial classical states. Numerical

simulation of the quantum and classical dynamics shows that, the transient behavior of

the system can lead to highly non-classical states even when the initial state is appar-

ently very classical. For more details of theoretical treatment and simulation, the reader

should refer to Ref. [62].

4.5.3 Conclusions

In conclusion of our theoretical analysis, it is important to point out that the cCPT

system has several novel characteristics that distinguish it from other systems and allows

a unique approach to study of nonlinear quantum-to-classical correspondence.

(1) The system is strongly nonlinear while in a fully quantum mechanical regime. For

many quantum systems, nonlinearity can only be accessed by application of large am-

plitude electric field. Here, only a few photons (tens of photons at most) are needed

for nonlinearities to be important. Furthermore, we limit ourselves to the supercurrent
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regime, in which no quasiparticles are generated by the CPT, so that the system remains

fully quantum coherent.

(2) The nonlinearity can be accessed by application of a small dc bias voltage, rather

than a large ac voltage. For typical values of L ∼ 0.5 nH and Lb ∼ 5 nH and for

ω0 ≈ 5 GHz/2π, we have ωd ≈ ω0 for Vdc < 100µV. This drive voltage will be carefully

filtered, allowing the system to remain in quantum regime even when strongly driven.

(3) The nonlinearity is tunable. The relative importance of the nonlinear terms in Eqs.

(4.27), (4.28), (4.29) and (4.33) can be adjusted by tuning the CPT gate voltage. This

may allow tuning of the dynamics from a regime in which the dynamics are more classical

to on in which they are more quantum.

(4) The environment of the CPT is extremely well controlled, and the amount of external

noise introduced is minimized. The major sources of external noise are the CPT gate

line and bias line, which can be heavily filtered.

(5) The dynamics are unstudied experimentally, and the theory of the full cCPT system

(including both CPT and cavity degrees of freedom) is unexplored. Unlike systems that

can be described as a Duffing oscillator, the quantum dynamics of the cCPT have not

been explored, which is the whole point of this dissertation.
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Design & Fabrication of the cCPT

This chapter reviews the experimental techniques involved in the development process of

the cCPT, namely design, fabrication. These seemingly mundane steps, are as a matter

of fact, crucial to the success of the whole experiment. One should always keep in mind

that, every minor or unnoticed error here could be largely magnified and potentially

come back to bite one later, even causing the failure of the whole experiment. In fact,

this is unfortunately, what I devote the majority of my Ph.D. life to. I hope that the

reader would learn from my lessons and after reading this chapter, become convinced that

creating robust designs and fabrication processes should be put as an experimentalist’s

top priority.

As you will see, the design and fabrication processes of the cCPT system are so intimately

related that I have divided them together in multiple sections, I have to frequently

refer to one for the other. Additionally, I have found Refs. [21, 37, 69] very helpful in
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engineering the circuit QED architecture, although the addition of dc bias lines certainly

complicates the entire structure.

5.1 Substrate

As an old Chinese military saying goes, grain and fodder must go ahead of the troops

and horses; an army marches on its stomach. So does a nano-device. Even before one

starts the design process, one should have the substrates in hand and at least an idea of

the kind of the metal the will be deposited.

Three different substrates are commonly chosen to fabricate CPW resonators, viz. bare

silicon, thermally oxidized silicon and sapphire. All of them have been demonstrated

to have the capability to achieve a high quality factor Q ∼ 106 − 107. We picked high

resistivity undoped silicon with only native oxide for the following reasons. First, as

silicon is the de facto backbone of the semiconductor industry, its high quality substrates

are widely and commercially available on the shelves. Second, silicon with native oxide

is an excellent insulator below the liquid Helium temperature: no leakage current has

been observed, if at most an 1V dc voltage bias is applied. Thus we do not need an extra

step of thermal oxidization. Last but not the least, it is not until we put down CPT

into the cavity did I realize that the weak conductivity of the silicon substrate at room

temperature actually provides outstanding protection for the CPT against potentially

damaging electrostatic discharges. Blessed by the unexpected protection, I have never

blown out a single CPT made on this kind of substrate.
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The substrates for fabricating all the samples discussed in this dissertation are undoped

bare Si wafers that have following parameters: 3” in diameter, thickness h = 375µm ,

〈100〉 oriented, relative dielectric constant εr = 11.9, a high resistivity ρ > 104 Ωcm.

As discussed in Subsection 2.2.3, as long as the metal of the CPW is made of super-

conducting materials, the internal loss is dominated by substrate dielectric loss and has

very little to do with the property of the metal film. Also as shown in Subsection 2.2.1,

the specific kind of metal does not affect the design of the CPW either, except for the

effect of kinetic inductance. We chose Al and Nb successively, for reasons that will be

clear in Section 5.4.

5.2 Design of the dc-biased CPW Resonator

When it comes to the design of a on-chip microwave cavity, in this case a CPW resonator,

the three most important parameters that should instantly pop into the designer’s mind

are: characteristic impedance Z0, loaded quality factor QL and the resonant frequency

ω of the cavity. Let us examine them one after another.

Characteristic Impedance

The most straightforward parameter in a CPW design is the characteristic impedance

Z0, which is simply determined by the ratio of the center conductor width a to the ground

plane separation b, i.e. k = a/b, as described by Eq.(2.22), subject to the condition that
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Figure 5.1: (a) Optical micrograph of a CPW resonator with coupling capacitors
and dc feed lines terminated by inductors. Zoom-in views of (b) an 8-finger coupling

capacitor and (b) a 3-turn spiral inductor.

the above dimensions are substantially smaller than the thickness of the substrate h, i.e.

a, b� h, as in Fig. 2.3.

To have a characteristic impedance of Z0 = 50 Ω, we can directly plug parameters of

the substrate into Eq.(2.22), or more conveniently use free design software, such as

AppCAD [70] and TX-Line [71]. Once we find the desired ratio, we are still free to
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select the absolute scale of a and b over a wide range. We would like to keep the gap

size s = (b− a)/2 small so that the EM field is tightly confined to a small volume, and

yet we want to the gap big enough to accommodate the embedded CPT. It turns out

that if we have the center conductor width to be a = 10µm, the resulting gap size that

matches Z0 ≈ 50 Ω impedance is, s = 5.5µm. This is a good compromise between the

need for tight confinement and the space for the CPT.

To have the chip connected to the external circuitry via multiple wirebonds, the center

conductors on the input/output side of the coupling capacitors need to be extended to

a width of at least 100 µm. Here lies another advantage of the CPW geometry: as

the characteristic impedance Z0 is almost unchanged over a wide range of transverse

dimensions, given the fixed ratio k, a smooth linear tapering from a = 10µm and

s = 5.5µm, to a = 150µm and s = 90µm would simply serve our needs, without

causing transmission reflection due to impedance mismatch. However, you as an astute

reader, may have found a catch here. The dimensions a = 150µm and s = 90µm

violates the previous rule that a, b� h. This inconsistency is resolved by the fact that

the chip would in fact be mounted upon a thick printed circuit board (PCB) with a high

relative dielectric constant εPCB = 10.2, making the Si substrate and PCB effectively a

double-layer substrate with a relative dielectric constant ε2L ≈ (εr + εPCB)/2 ≈ 11 and

a thickness h2L > 600µm. The CPW model is therefore, still a valid approximation and

the impedance Z0 over the taper would remain close to 50 Ω.
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Quality Factor & Coupling Capacitors

The loaded quality factor QL is a parallel combination of internal and external Qs as

in Eq.(2.16). Since the internal Qint depends the intrinsic losses of the resonator [see

Subsection 2.2.3], once the CPW is fabricated on the selected substrate, and proper

magnetic shielding is applied, Qint will stay relatively fixed at a given temperature. In

contrast, the external Qext, is determined by the strength of the coupling capacitor,

according to Eq.(2.17), which gives the designer great freedom to engineer the desired

loaded Q.

Two common patterns of the on-chip capacitor design are gap capacitors and interdigi-

tated finger capacitors. The size of the gap capacitance [illustrated in Fig. 2.3] depends

on the width of the gap, i.e. separation of the center conductors. Not-too-narrow gap

capacitors usually put the resonator in the undercoupled regime, where Qext � Qint and

QL ≈ Qint. In practice, this regime provides us a simple way to measure the intrinsic

Qint of the CPW, as we did for characterizing the intrinsic Q for Nb film at 4.2 K in

Section 3.3.

The geometry of a finger capacitor is slightly more complex than that of a gap capacitor.

It is composed of a number of pairs of ‘fingers’ of length lf , width wf and separation

sf , as shown in Fig. 5.2. To make things simple and at the same time help create

a robust photolithography process, both the finger width and separation are set to

wf = sf = 3µm, well above the minimum feature size that a standard mask aligner and
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stepper/scanner are able to produce. The length of the fingers are set to lf = 20µm,

for reasons that soon will be clear in section 5.2.

 20 μm

s
f

l
f

w
f

Figure 5.2: Optical micrograph of an 8-finger coupling capacitor, showing parameters
characterizing the geometry of the inductor.

The devices discussed hereafter are all fabricated in Nb film, operating at dilution fridge

base temperature T ≈ 30 mK. Under these conditions, we fabricate and measure a

CPW resonator with symmetric 1+1 finger (2-finger) capacitors, getting a loaded QL ≈

1.5 · 105. Given the simulated external Qext = Q2f/2 = 2.35 · 105 [see Table 5.1], the

resonator turns out to be in the overcoupled regime, not too far from the critical coupling

point (Qext and Qint are comparable). Still, the internal Qint can also be estimated by

Eq.(2.16): Qint = 1/(Q−1
L −Q

−1
ext) ≈ 4.15 · 105, which is within the expected range of the

Qs of our Nb film.
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The values of dc capacitance are conveniently simulated by Maxwell, a commercial EM

field simulation package [72]. The simulated results, as well as the ‘one-sided’ external

Q of the resonator with corresponding capacitor operating at 5 GHz, are shown in Table

5.1. An ‘one-sided’ resonator has one coupling capacitor as given, and the other with

infinitesimally small coupling, thus can be treated as if it is ‘one-sided’. The ‘one-sided’

external Q of the resonator, which gives an idea of the external Q tuned by just the given

capacitor, is determined by Q1S ≈ C/ω0RLC
2
κ. A short cut for estimating the effective

capacitance of a full-wave resonator is C = π/(ω0Z0) = 2.0 pF at 5 GHz [Eq.(2.8)],

which avoids the need of estimating εeff .

Coupling capacitors Cκ (fF) Q1S

20 µm gap 0.23 1.2 · 107

10 µm gap 0.42 7.2 · 106

1+1 finger 1.65 4.7 · 105

2+2 finger 4.47 6.4 · 104

4+4 finger 11.14 1.0 · 104

6+6 finger 18.49 3.7 · 103

Table 5.1: Simulated values of dc capacitance and calculated ‘one-sided’ external
Qsat 5 GHz. Cκ is the simulated coupling capacitance. Q1S is the external Q tuned

by the given capacitor only, as if the cavity is one-sided.

In principle, the capacitance should have been simulated at microwave frequencies as

well. Nevertheless, by the time the final design was set in October 2010, we did not yet

have access to any simulation software capable of doing this, e.g. Sonnet [73]. As will

be shown, the dc values of capacitance turn out to be accurate enough for our practical

purposes. For future reference, one should always start and make adjustments with
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dc simulations, which run orders of magnitude faster than full microwave simulations.

Microwave simulations can then be followed to double-check and fine-tune the dc values.

As in Chapters 2 and 3, we first assume symmetric capacitive coupling to the input and

output of the CPW resonator. The decay rate from each capacitor, also known as the

angular frequency linewidth due to the loaded capacitor, is defined as κin = ω0Q
−1
Cin

. In

the case of symmetric coupling Cin = Cout, we have κin = κout, which means 50% of

the escaping photons leak out from each side of the resonator. This is rather inefficient

from an experimentalist’s point of view, in that only half of the outgoing photons are

collected from the output capacitor by the amplifiers in the subsequent stages, and the

other half simply ‘die without a purpose’. To make the lives of most escaping photons

more meaningful in the cCPT experiments, asymmetric coupling are adopted such that

κin � κout. Specifically, the 1+1 finger (2-finger) capacitor is always selected as the

input capacitor and the output capacitor can be either a 4+4 finger (8-finger) or 6+6

finger (12-finger) capacitor, depending on the requirement of the loaded Q. Having an

8- or 12-finger capacitor at the output end, simple calculations indicate that only about

2% or 0.8% of the outgoing photons, respectively, would escape via the input channel.

This is the end of the story for engineering of the Q, if we only consider the conventional

transmissional CPW architecture. Adding dc feed lines terminated by inductors, how-

ever, surely complicates things quite a bit, for it introduces an extra channel for photon

loss.

Section 3.5 shows that for a symmetrically overcoupled resonator with 5.85 nH spiral
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inductors terminating the dc bias lines at 4.2K, the isolation of the dc bias lines at

the resonant frequency, viz. the difference between the peak value of the main line

transmission S21 and those of bias line transmission S31 and S41 at f0, is about 13 dB

(ideally, S31 = S41 as a result of symmetry), indicating that less than 2.5% of the input

power escapes through the dc bias lines.

While it is possible to develop a theory that takes into account the external loss due

to the dc bias lines, i.e. Qdc, from a practical point of view, it is more convenient and

accurate to take advantage of the EM simulation software Microwave Office for this dc-

biasing scheme, as its results agree very well with the experiment in Chapter 2. Further

simulations demonstrate that, for CPW resonators with asymmetric coupling described

above and dc feed lines terminated by 5.85 nH inductors operating at temperature

20 mK, the isolation of the dc lines remains about 13 dB, even though the absolute

magnitudes of all transmissions Si1 are lower due to the smaller coupling on the input

side, and S41 gets pulled down much more than S31 owing to its asymmetry.

As the microwave leakage through the dc ports has been significantly suppressed by the

bias inductor, we simply take the Q determined by intrinsic and coupling Qs [Eq.(2.16)]

as a rough approximation of the loaded QL for the corresponding dc-biased CPW cavity,

which turn out to be a fairly good estimate. For instance, the device that will be shown in

the next chapter has parameters as follows: Cin = C2f = 1.65 fF, Cout = C12f = 18.5 fF,

with identical bias inductors Lb ≈ 6 nH. The loaded Q controlled by QL ≈ Q12f = 3700

is slightly higher than the measured value Qm ≈ 3500, as is expected. In comparison,
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the simulated loaded Q of the whole dc-biased structure is QL ≈ 3600, a narrowly better

agreement with the measured value.

In summary, to estimate the loaded QL of a dc-biased CPW, a good rule of thumb is

to just use the value given by Eq.(2.16) as if the bias lines are not there. Alternatively,

a quick EM simulation of the full structure would also give at least an equally good

estimate of the QL, if not any better.

Resonant Frequency

The cavity resonant frequency, an ostensibly straightforward parameter, is in fact the

hardest to predict with a high accuracy by theory but essential to pin down in any cavity

experiment. As in Subsection 2.2.1, the the resonant frequency f0 of a full-wave CPW

resonator (l = λ) is simply given by

f0 =
c

λ
√
εeff

=
c

l
√
εeff

. (5.1)

The effective relative dielectric constant εeff can be calculated by Eq.(2.21), or more

easily by simulation softwares AppCAD or TX-Line.

Before explaining why the analytical calculation have difficulty producing an accurate

resonant frequency, it is worth mentioning a couple of tricky points. First, although our

substrate is made of bare silicon without intentional thermal oxidization, the natural

oxidized oxide still makes the substrate itself effectively a double layer system, which
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makes obtaining an exact value using either analytical formula or simulations very dif-

ficult. In fact, SiO2 has an effective dielectric constant εr2 = 3.78, which is in between

the dielectric constants of vacuum (εr0 = 1 by definition) and Si (εr1 = 11.9). So one

way to get a simple-minded but sometimes surprisingly good approximation for εeff , is

just a simple average of the dielectric constants of vacuum and the Si substrate, namely,

εeff ≈ (εr + 1)/2.

More importantly, we need to be very careful when measuring the electrical length of

the resonator, especially at its ends. For gap capacitors, since the EM fields decrease

rapidly in the air, the physical starting/ending point of the gap capacitor can be treated

naturally as that of the whole resonator. For finger capacitors, since the opposing

fingers on both side of the capacitor extend deeply into each other, one would probably

guess that half of the finger length lf needs to be added to the physical length of the

bare resonator. Experimental data [37] show that good fits to the resonance frequency

can be obtained if approximately 40% of the finger length lf = 100µm is taken into

account, regardless of the number of fingers. While using this rule of thumb in our

calculation, to achieve a better absolute uncertainty, we decided to use a shorter finger

length lf = 20µm in our design, instead of 100µm.

Besides the extra electrical length added by the finger capacitors, a number of other

factors come into play. For a conventional CPW resonator with the sole main line, we

have shown the resonant frequency shifts due to the coupling capacitors in Section 2.1.3

and kinetic inductance in Section 2.2.2. The downward pulling by the loading of capac-

itors are well quantified by Eq. (2.15) and can be further approximated by −ω0Cκ/C
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for symmetric coupling. In contrast, the downward shift due to kinetic inductance is

difficult to estimate, but its effects in frequency shift is estimated to be less than 5% for

our geometry [See Section 2.2.2].

Again, adding the dc-biased lines with the terminating inductor Lb, plays a role in the

resonant frequency of the main line. Another simplified lumped element model account-

ing the bias feed lines has been derived [74], expressing the new effective capacitance C

and inductance L seen by the CPT as

C =
Clλ

2
(1− Cκ

Lb
Z2

0 ) (5.2)

L =
Llλ

2π2
(1 +

2

π
Z0ω0Cκ). (5.3)

Hence, the shifted resonant frequency due to the loading of bias lines together with the

capacitors is well approximated by

ω′ ≈ ω0(1 +
Cκ
2Lb

Z2
0 )(1− 1

π
Z0ω0Cκ). (5.4)

Using our device parameters: Cκ ≈ Cout = 18.5 fF and Lb ≈ 6 nH, the upward shift

due to the inductor Lb is about 0.8%. Even this is an overestimate, since the above

equations are derived for symmetric coupling capacitors. For asymmetric couplings

with Cin � Cout, the effect of the input capacitor is negligible and the total shift should

only be ∼ 0.4%. The shift due to the loading of the bias lines can therefore be safely

neglected. Amazingly, what this approximation gives us the same as that obtained for
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a bare CPW main line pulled by the coupling capacitors, i.e. ω′ ≈ ω0(1− Cκ/C), as it

should!

Finally, the embedded CPT per se would cause a shift in the resonant frequency as well,

since the CPT acts like an inductor in the supercurrent regime. The parallel connection

of the CPT inductance LCPT and the CPW effective inductance L implies that the

modified effective inductance L′ obeys

1

L′
=

1

L
+

1

LCPT
. (5.5)

Thus the shifted resonance is then

ω = ω0

√
1 +

L

LCPT
. (5.6)

Since the the CPT inductance LCPT can vary from 20–100 nH depending on the gate

bias voltage [60], and L = Z0/(ω0π) ≈ 0.5 nH for a CPW cavity resonant at 5 GHz, the

upward shift due to the CPT is expected to be between 0.12% to 1.24%.

In conclusion, if the electrical length is accurately estimated and the pulling of the

loading capacitors is properly calculated, the downward uncertainty of the estimated

resonant frequency should be within 5% mainly because of a joint effect of the kinetic

and CPT inductances. Indeed, the two batches of Nb CPWs fabricated in series end up

having a resonant frequency 4.0% and 2.67% below the designed values of 5.0 GHz and

5.4 GHz, respectively, consistent with our expectation.
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Spiral Inductor

You may have been wondering about how we know the inductance of the spiral inductors

all along. This is actually not a trivial question, to which tremendous effort has been

devoted, because of its importance in silicon-based integrated circuits for radio-frequency

applications [75–77].

d
in

d
out

w s

 50 μm

Figure 5.3: Optical micrograph of a 3-turn spiral inductor coupled to the CPW bias
line, showing parameters characterizing the geometry of the inductor.

A simple and accurate expression for estimating the planar spiral inductance at room

temperature is known as the current sheet model, which approximates the sides of the

spirals by symmetrical current sheets of equivalent densities [77]. This simple model

is capable of calculating inductances for different spiral geometries, such as square,

hexagonal, octagonal and circular spirals. While the first three kinds of spiral inductors
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are easier to lay out than the last one, we pick the circular spiral geometry, because it is

the only one free of the sharp bend discontinuities and coupling of the corners, making

the simple approximation more appropriate and parasitic modes less likely to appear.

As shown in Fig. 5.3, a circular spiral inductor is completely specified by the number

of turns n, the turn width w, the turn spacing s, and the inner diameter din or outer

diameter dout. The last two parameters are related by dout = din + 2n ·w + (2n− 1) · s.

The expression for the spiral inductance given by the current sheet model is

L =
µ0n

2davgc1

2
(ln(c2/ρ) + c3ρ+ c4ρ

2) (5.7)

where the average diameter davg = (din + dout)/2, and the fill ratio is defined as ρ =

(dout−din)/(din+dout). The coefficients ci for the circular spirals are as follows: c1 = 1.00,

c2 = 2.46, c3 = 0.00, c4 = 0.20. The accuracy of Eq.(5.7) worsens as the ratio s/w

becomes large; for s ≤ 3w, it exhibits a maximum error of 8% for room temperature spiral

inductors. The results given by the current sheet model are also in excellent agreement

with two other models, i.e. the modified Wheeler and monomial fit expressions [77].

A online calculator comparing all three models for square, hexagonal, octagonal spiral

inductors is available from Stanford Microwave Integrated Circuits Laboratory [78].

For our circular inductors, we naturally keep the spiral turn width identical with the

center conductor width of the CPW, i.e w = a = 10µm, keeping the CPW-to-microstrip

transition smooth. To have a small s/w ratio and at the same time not to push the min-

imum feature size of photolithography, the turn spacing is set at s = 5µm. Meanwhile,
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to make multiple wirebonds on the inner pad of the inductor, the inner diameter is fixed

at din = 300µm. Given the above parameters, the values of spiral inductance for turns

of n = 1 to 4 by the current sheet model (5.7) are shown in Table 5.2.

number of turns n outer diameter dout (µm) Spiral inductance L (nH)

1 320 0.84
2 350 2.83
3 380 5.85
4 410 9.88

Table 5.2: Circular spiral inductance for turns of n = 1 to 4, w = 10µm, s = 5µm
and din = 300µm by Eq.(5.7)

Note that for superconducting inductors, kinetic inductance again needs to be taken

into account. Since a spiral inductor is essentially a microstrip with large diameters

changing at each turn, similar to a CPW, the kinetic inductance of a microstrip is only

a few percent of its linear inductance (∼ 0.1 nH for 4-turn inductors with davg = 400µm),

thus negligible compared to the spiral inductance.

Since an inductance value of 5 – 10 nH is ideal for our experiments, both 3-turn and

4-turn inductor designs were selected and incorporated into our dc biasing scheme.

Chip Dimensions

In order to suppress the parasitic modes of the cavity chip and the sample box, the

chip must be made as small as possible, so that the minimum cut-off frequency of such

modes will be raised further away from the resonant frequency of the CPW. This poses a

81



Chapter 5. Design & Fabrication of the cCPT

fairly difficult design issue in that with the addition of two half-wave dc lines with spiral

inductors to the full-wave line, our structure is intrinsically significantly larger than the

most commonly used half-wave resonators at around 5 GHz.

For the latest design, the effective dielectric constant is estimated to be εeff ≈ 6.78 from

the previous measured resonance. This gives a full-wave length of l = λ ≈ 21.30 mm

at the designed resonant frequency of 5.4 GHz (the resonance turns out to be at 5.256

GHz). To fit the dc-biased structure on a 10.5 mm by 5.5 mm chip, the center conductor

and the gaps of the CPW have to meander. If the effective radius r of the meandering

line is much greater than the gap size s, the impedance of the CPW will stay unchanged

[21]. In our case, all effective radii are set to be r = 155µm in comparison with gap

s = 5.5µm and the separation of the ground planes b = 21µm.

Special attention is also paid to make sure each of the dc feed lines and the main line

are kept away from one another as distant as possible, thus suppressing the crosstalk be-

tween different channels to a large extent. To prevent other on-chip parasitic modes, e.g.

slotline modes, jumpers are wirebonded to connect two halves of the ground plane peri-

odically [38]. Wirebonds are also heavily implemented as effective air bridges wherever

CPW discontinuities are encountered and various parasitic modes most likely to appear,

such as T junctions, 180◦ bends, CPW tapering and CPW-to-microstrip transitions, as

have been done in Fig. 5.4(b).
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5.3 Printed Circuit Board & Sample Box

In order to perform electrical and microwave measurements on the CPW cavity, the sam-

ple chip has to somehow be connected to external circuitry. The mounting and packag-

ing of the sample is extremely important for our ultra-sensitive ultra-low power system:

there are only tens of photons in the cavity on average (∼ 100 at most), outputting a

few fW power. The goals of our sample packaging are therefore: 1, fully transmitting

the signal from the cavity without impedance mismatch; 2, suppressing parasitic modes

to a great extent; and 3, screening irrelevant EM fields from the ambient environment.

The last requirement can be easily satisfied by spatially confining the sample in a small

volume by a metallic shield, i.e. a sample box, whose walls should be thicker than

the skin depth of microwave frequencies on the order of a few GHz. To meet the first

two goals, careful design and engineering have to be carried out. A standard approach

[21, 69] is to mount the sample chip on a printed circuit board (PCB) within the box

shielding, as in Fig. 5.4.

PCB

Let us start from the PCB, to which the sample chip is directly attached. To best match

to the impedance of the on-chip CPW, it is natural to choose the same CPW geometry

for the board, which also makes the board design process quite similar to that of the

chip.
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(a)

(b)

Figure 5.4: (a) Sample box mounted on the fridge ‘tail’ with a chip in it and the
‘mode filling lid’ of the box. (b) Optical micrograph of a dc-biased CPW chip mounted

on the PCB with wirebonds connecting the transmission lines and ground planes.
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Once again, we at first need to choose the ‘substrate’ of the PCB, viz. the material it is

made of. A low-loss woven glass reinforced laminate, Arlon AD1000, is selected mainly

because of its high dielectric constant εr = 10.2. The board has a thickness of 25 mil, 1/2

oz double-sided copper cladding. A gold plating (thickness 0.05 mil) has been applied

to both sides of the board for reliable wire-bonding and protection against tarnishing.

Note that there is no standard nickel plating between the copper and gold layers, since

we do not want any magnetic material in the proximity of the superconductor [69].

The board CPW center conductor width of a = 5 mil and gap width s = 3 mil is opti-

mized again by AppCAD to achieve both a 50Ω characteristic impedance and roughly

match the corresponding dimensions of the on-chip CPW on the border, rendering pos-

sible multiple short side-by-side wirebonds connecting their center conductors. When

the traces are close to the edge of the board, just like the on-chip CPW, the board

center conductor and gap widths are linearly extended to another set of 50 Ω-impedance

dimensions, i.e. a = 16 mil, s = 12 mil, which are large enough for the SMA connector

center pins (10 mil in diameter) to be soldered on. Another reason for introducing the

dc biases to both the dc feed lines and the gate line via the CPW central traces is, in

this way we can collect the microwave transmission leaking through the spirals (S21 and

S31 in Fig. 3.1).

To suppress the parasitic modes caused by different ‘grounds’, it is best to make sure

the system has only a single well-defined ground, i.e. all the grounds of the whole

measurement setup, including the chip, the board, the box, the dilution refrigerator tail,

etc., must all have good and frequent contact with one another. For the board per se,
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different parts of the ground plane on the top side are periodically connected to the

back, via a large number of plated through via holes (20 mil in diameter, spacing 40 mil

or so). Furthermore, the bottom copper cladding of the board, kept as a single piece, is

held firmly against the sample box by two top screws.

Similarly, we would like to make periodic wirebonding connections between the chip

and the board, as many and short as possible. This is important for a well-established

ground, but even more important for the wirebonds bonding their center conductors as

well as the gate bias line, because the inductance of the Al wirebonds increases with

its length at about 1 nH/mm [21]. We want to keep the total inductance between the

grounds or the conductors as small as possible, so that the possibility of producing

parasitic modes is minimized. To achieve this, a rectangular cut-out at the center of the

circuit board is milled out to be 0.426” by 0.23” in size and 15-mil deep, thus making

the chip fit snugly into the cutout and flush with the board traces. The two halves of

the chip ground are also connected via wirebond jumpers periodically, especially near

the various discontinuities [see Fig. 5.4(b)].

Sample Box

The sample box is made of OFHC copper, subsequently gold plated without an inter-

mediate Ni layer for protection against tarnishing as for the board. To screen the EM

fields from the environment, the box walls need to be much thicker than the skin depth

of copper at relevant frequencies of 4 – 10 GHz, which is estimated to be around 1 µm.

Thus practically any rigid copper box should work for this purpose. In our case, the
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dimensions of the SMA connectors and a dc feedthrough post predetermine the thickness

of the facing walls to be 125 mil and 60 mil, respectively.

This leads to the tricky part of the sample box design, viz. each of the microwave/dc cen-

ter pins well soldered to the board actually acts like an antenna, which radiates/receives

microwave signals to and from the free space inside the box, causing serious disturbances

to our delicate transmission measurement. In fact, the first version of our box had a

plain box lid, which made the interior of sealed box well approximated by a rectangular

waveguide [35]. Using the box dimensions, simple calculations show that the lowest cut-

off frequency of the TE/TM modes that can propagate within the box is right around

our cavity resonance ∼ 5 GHz, which is unacceptable for our measurements.

To overcome this issue, we borrow an ingenious idea, namely, the so-called ‘mode filling

lid’ from Ref. [69], which developed this idea after three iterations of their box designs.

The essence of the ‘mode filling lid’ is to fill the inner space of the box with metal as

much as possible, so that the cutoff frequencies of the surviving TE/TM modes are

substantially lifted.

Accordingly, we fabricate the first version of the ‘mode filling lid’ for our PCB and

chip layouts, shown in Fig. 5.5(a). The lid should be pressed tightly against the board,

making the channels of the lid the only path the microwave can travel. Again, considering

all possible cross-sections inside the box and plugging the dimensions into rectangular

waveguide formulas, the lowest cutoff frequency of the TE/TM modes turns out to be

12.5 GHz, which is a great improvement over the plain lid and should not affect our
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microwave detecting range of 4.0 – 6.0 GHz. However, we found from our measurements

at 4 K that the crosstalk between the input microwave port and dc bias ports are still

large compared with our simulation results.

(a) (b)

Figure 5.5: Comparison of the first (a) and second (b) versions of the ‘mode filling
lid’ for the sample box. Note that in the first (a) lid, indium barriers were improvised
to cut crosstalk between different ports and yet its microwave performance is still not

as good as the (b) lid.

To block the unwanted crosstalk, a second version of the lid was then made with even

narrower and shallower channels, as soon as the corresponding traces on the board are

tapered down, as in Fig. 5.5(b). In this manner, the various dc/microwave ports are

further isolated from one another. The good agreements in transmission measurements

and simulations shown in Fig. 3.4 was not achieved until we used the new box lid.

With the close presence of the lid to the PCB traces, one might worry that the properties

of the board CPW, especially its characteristic impedance could be changed, as it has

effectively becomes a well-shielded CPW rather than a bare CPW in the free space.

Fortunately, for a shielded CPW with the bottom of the shield a distance of H away

from the surface of CPW, and a ground plane extending a width of L/2 from the middle

of the center conductor to its sides, the impedance Z0 is affected by less than 1.5% if

L/b ≥ 1.75 and H/a ≥ 2.50 [38]. Consequently, the dimensions of our final lid design
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are arranged to conform this criterion with a good margin, listed as follows: close to the

edges of the board, the channel width is L = 125 mil and the channel height is H = 242

mil; when the traces narrows, L = 35 mil and H = 15 mil.
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Figure 5.6: Measured transmission spectrum S21 of a cCPT in the final design of the
sample box, showing nearly 15 dB suppression of parasitic modes around the resonance

at f0 = 5.256 GHz.

In the end, the final design of sample box and lid also works well for our cCPT ex-

periments. The resulting main transmission S21 of the cavity is shown in Fig. 5.6,

displaying nearly 15 dB suppression of parasitic modes 400 MHz around the resonance

at f0 = 5.256 GHz, with Q ≈ 3500.
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5.4 Fabrication

Once we have the design of the cavity, the fabrication of the cCPT is relatively straight-

forward. To fabricate a cCPT sample, its individual components, i.e. the dc-biased

cavity and the CPT, need to be made separately by different techniques, mainly be-

cause their overall scale (∼10 cm vs. ∼5 micron) and minimum feature size (∼ 5 micron

vs. ∼ 70 nm) are quite distinct as in Fig. 5.7.

The Nb cavity is fabricated by our collaborators, the Simmonds group at NIST Boulder,

involving the following steps: 1, 100 nm Nb film is put down on the bare Si substrate by

dc sputtering; 2, a standard photolithographic process transfers the design pattern from

a photo mask to the photoresist on the surface of the substrate; 3, the exposed area of

Nb film is then dry etched by a reactive ion etcher, thus defining the gaps of the CPW

and and creating a sloping side wall.

Since the CPT and cavity are produced in separate steps, the cavity is exposed to the air

in between and a robust Nb oxide layer is then formed. To ensure the coupling between

the CPT source and drain leads to the center and the ground of the cavity, as well as

the coupling between different parts of the gate line, some means of either removing

the oxide or preventing its formation must be found. Our collaborators at NIST deposit

thin Ti/Au contact pads after ion milling away the oxide on the Nb resonators, as shown

in Fig. 5.7 (b). The Au of the pads does not oxidize during the subsequent exposure

to air, and the total pad thickness of 30nm is sufficiently thin that it can be driven
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500 nm

CPT

gate

b

c

Au contact pad

5 µm

ground

CPW resonator

a 1 mm

Figure 5.7: (a) Optical micrograph of a CPW resonator with dc feed lines terminated
by inductors. (b) Electron micrograph of the center of the cavity showing the Ti/Au
contact pads connecting the source and drain leads of the CPT, and the gate line
entering the cavity gap from lower right. (c) Detailed view of the CPT, showing the

source/drain leads, center island and the gate line.
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superconducting via the proximity effect by the thicker metal of the Nb cavity below or

the Al CPT leads above.

The CPT is reliably made in our lab by electron-beam lithography followed by double-

angle shadow evaporation [79]. To prevent trapping of quasiparticles on the island and

ensure 2e periodicity in the CPT supercurrent regime, we fabricate the CPT with an

ultra-thin (thickness ∼ 7 nm) central island [see Fig. 5.7 (c)], which has a slightly larger

superconducting band gap than the thicker leads [80]. To make sure such a thin Al

film is electrically continuous, the substrate has to be cooled to a low temperature. A

liquid nitrogen cooled sample stage in our thermal evaporator was developed by Dr.

Zhongqing Ji [57]. The ultra-thin islands fabricated by this technique in our lab have

shown to routinely prevent quasiparticle poisoning of the supercurrent in the past [81],

as well as in the cCPT sample [Fig. 4.5 with 2e period].

To make sure the Au contact pad is driven superconducting especially in the CPW gap

where there is no Nb layer underneath the Au, we want to deposit the Al leads layer as

thick as possible. We are able to routinely achieve a thickness of ∼ 70 nm for this layer,

which completely covers the Au pad within the gap and should drive it superconducting

at the dilution fridge base temperature ∼ 30 mK. In addition, the large contact area (

20×5µm2) of the lead and the Au pad ensure reliable direct coupling between the CPT

and the cavity.
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Chapter 6

Measurement & State

Reconstruction Techniques

This chapter is divided into two parts. We first discuss the cryogenic, electrical, and

microwave measurement techniques used in the cCPT experiments. We then introduce

quantum state tomography and apply it to the cCPT emission fields. In particular, we

extend maximum-likelihood methods for the microwave photon fields with relative large

numbers of signal and noise photons, and reconstruct density matrices from the field

quadrature measurements.
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6.1 Measurement Setup

Given direct access to the dc source-drain and gate voltage lines, electrical transport in

the cCPT can be probed by standard dc measurement circuits, very much the same way

a bare CPT is measured. At the same time, the cavity state can be characterized by

microwave transmission through the cavity output, similar to what we did in Chapter

3 for a dc-biased cavity without a CPT in it. We choose a standard transmission type

setup for the cCPT experiments as opposed to reflection, because it is exactly what the

dc biasing scheme with symmetric biasing lines and asymmetric coupling capacitors, is

designed for.

6.1.1 Cryogenic Setup

The cCPT experiments are conducted in an Oxford Instruments Kelvinox 100 dilution

refrigerator with a base temperature of ∼ 20 – 30 mK. The sample is mounted on a

home-made fridge ‘tail’, which is screwed on the cold stage inside the mixing chamber

at the base temperature.

This Kelvinox 100 dilution fridge in our lab was historically set up to perform reflection

measurements [57, 79]. Although it is not difficult to convert it to a transmission setup,

great care must be taken to ensure proper noise filtering and heat sinking for both

microwave lines and dc lines. Pictures of the fridge insert and its various components

are shown in Fig. 6.1.
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(a)

(b)

(e)
(c)

(d)

Figure 6.1: Kelvinox 100 dilution fridge insert (a) inside the inner vacuum chamber
with a magnetic shield installed, with various enlarged components: (b) a HEMT am-
plifier with a circulator right underneath, (c) the still and two circulators inside the
mixing chamber, (c) two ∼ 40 µF capacitors and bias tees for both dc biasing lines,
and (d) the sample box mounted on the tail seen with the magnetic shield removed.
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As discussed in Section 4.5, the cCPT is expected to be driven by the dc bias in the

regimes we are interested, for which no ac signal is applied. Even in the few circum-

stances where an external microwave signal is needed for characterizing the cavity, less

than -70 dBm (100 pW) is required at the input end of the cavity. Thus a low thermally

conductive and lossy stainless steel coaxial cable is perfect for the microwave input line

from room temperature to the fridge tail. In addition, cold attenuators at various stages

are used to further reduce the noise transmitted in the input cable. A total of ∼ 50 dB

attenuation is achieved from room temperature to the cavity input.

The microwave output line, on the other hand, needs to have very low loss, especially

before the cavity output signal reaches the first amplification stage, in this case, a high

electron mobility transistor (HEMT) amplifier. On the fridge tail, low-loss copper cables

are used for both input and output lines, which also provides high thermal conductivity

to keep the sample in thermal equilibrium with the cold stage. Between the cold stage

to the input of HEMT amplifier at 4.2 K, a 0.0085” Nb coax cable is installed, as Nb

becomes superconducting below 9 K and has both nearly zero electrical loss and zero

heat conductance.

The Berkshire 3-stage low-noise HEMT amplifier used here has three amplification stages

supplying a total gain of ∼ 38 dB for frequencies between 4.0 – 6.0 GHz with a noise

temperature of Tn ≈ 8 K. In order to prevent the HEMT back acting the sample, three

Pamtech circulators (4.0 – 8.0 GHz) are installed in series in between the cavity output

port and the HEMT, two at the fridge tail and one right below the HEMT, each adding

∼ 20 dB isolation.
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In addition to the microwave lines, a ribbon of 24 Manganin wires runs from room

temperature to the tip of fridge tail. These dc wires are filtered by a 3 Hz RC low pass

filter at room temperature and a Cu powder filter at the base temperature. In the cCPT

experiments, we need only three dc lines: two for introducing and measuring the bias

voltage and current, and one for supplying the gate voltage bias. For redundancy, each

dc line is applied through two different wires on the ribbon.

From the ribbon wires to the sample the gate bias is introduced via the dc feedthrough

going into the sample box. Each of the source-drain bias lines is connected via a bias tee

whose ac port is terminated by a 50 Ω cap. The combined dc and ac output of the bias

tees is then transmitted to the PCB traces via Cu coax cables and SMA connectors. A

100 Ω cold resistor is inserted into each source-drain bias line between the ribbon wires

and the dc input port of the bias tee for CPT protection against electrostatic discharge.

As discussed in Section 2.2.3, trapping of magnetic flux in superconducting films may

contribute to excess internal dissipation of the cavity. To alleviate this problem, a 0.062”

thick Amumetal 4K (A4K) magnetic shield [82] was designed, fabricated, and ultimately

bolted to the fridge tail, fully enclosing the sample box [See Fig. 6.1(a) & (e)]. A4K is a

high permeability nickel alloy and this specific shield has been optimized for use at our

base temperature 30 mK through hydrogen annealing cycles. Situated at more than five

times the shield’s inner diameter from the opening, the magnetic field at the sample box

is estimated to be attenuated by a factor of ∼ 2000 − 3000, thus eliminating concerns

regarding stray magnetic fields.
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6.1.2 Electrical & Microwave Measurement Scheme
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Figure 6.2: dc and microwave measurement scheme for the cCPT experiments.

The combined dc and ac measurement scheme for the cCPT experiments is illustrated

in Fig. 6.2. In this scheme, both the source-drain bias voltage Vdc and the gate bias

voltage Vg are first generated by a data acquisition (DAQ) board controlled by the

Labview program on a computer. The current of the inductive bias line Idc is measured

by a current-to-voltage converter (i.e. current amplifier) before being fed into the cold

bias line. Because the drain electrode of the CPT is always internally grounded, the

current going through the CPT double junctions ICPT is simply the same as the incoming

current, i.e. ICPT = Idc.

Meanwhile, the other inductive bias line can be used for directly measuring the voltage

across the CPT VCPT, as essentially no current will be flowing through this line due to the

ultra-high input impedance of the voltage amplifier. By scanning the bias voltages Vdc =

VCPT and Vg while monitoring the CPT current, an image plot of current ICPT(Vdc, Vg)

revealing the dc properties of the cCPT, can be routinely obtained.
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On the other hand, standard transmission measurements can be employed to charac-

terize the basic microwave properties of the cavity, such as the resonant frequency and

the loaded Q, ideally by a network analyzer. The network analyzer in our lab, however,

only operates at frequency up to 3.5 GHz, too low for our cavity resonance. A Labview

program was therefore written to simultaneously control a signal generator and a spec-

trum analyzer via their GPIB (General Purpose Interface Bus) interfaces, effectively

implementing a network analyzer. A Lucix 2 – 6 GHz room temperature field-effect

transistor (FET) amplifier is used to amplify the signal prior to measurement by the

spectrum analyzer, providing another stage of gain of ∼ 45 dB at around 5 GHz.

6.1.3 Improved Microwave Measurement Scheme

The measurement setup in Fig. 6.2 worked well for our investigation of dc transport

in the cCPT system. Nevertheless, it has serious limitations for sensitive microwave

measurements.

Let us consider thermal noise in a simplified cCPT model, with only the protective

resistor R = 1 kΩ and a single Josephson junction at the fridge base temperature T = 30

mK, as shown in Fig. 6.3(a). We emphasize here that the noise considered is the low

frequency noise introduced by the dc feed lines, as opposed to the cavity resonance at

∼5 GHz, because the high frequency noise has been carefully filtered for both dc and

microwave lines. For low frequencies close to dc, even at a low temperature T = 30

mK, voltage fluctuations resulting from the thermal noise of the resistor are still well
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approximated by the Rayleigh-Jeans approximation, giving the white Johnson noise [35]:

Vn =
√

4kBTBR. (6.1)

R =1 kΩ

C JJ

R =1 kΩ

JJ

(a) (b)

Figure 6.3: A simplified cCPT model to study the effect of the thermal noise, with-
/without the capacitor.

Assuming low frequency noise with a moderate bandwidth B = 1 MHz enters the cavity

via the dc lines, an apparently small thermal noise voltage Vn ≈ 40 nV given by Eq.

(6.1) is applied to the junction. However, the resulting jitter in the Josephson frequency

δfd =
2eVn
h
≈ 20 MHz (6.2)

being much larger than the cavity linewidth Bc = f0/Q ≈ 1.5 MHz, is clearly far too

large. Hence, sharp features within the cavity linewidth, if any, would definitely be

washed out by the thermal noise.

Fortunately, a large capacitor can be added to the circuit to form a RC filter, as shown

in Fig. 6.3 (b). The RC low-pass filter with a cut-off frequency of fc = 1/(2πRC),
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effectively reduces the integrated voltage noise to Vn =
√
kBT/C, which no longer

depends on the resistance R.

We installed two ceramic capacitors in parallel on each dc feed line [see Fig. 6.1(e)]. Each

of them has a capacitance of 220 µF at room temperature and has been tested at 4 K,

which indicates a cold capacitance of ∼20 µF. The parallel arrangement of the capacitors

gives a large total cold capacitance of C ≈ 40µF. Thanks to the large capacitors, the

voltage jitter is reduced to Vn ≈ 0.1 nV, corresponding to a drive frequency fluctuation

of δfd ≈ 50 kHz.

With a such great improvement from the cold capacitors, one may worry that whether

the thermal noise from room temperature would live up to this standard as well. At

room temperature a capacitor can similarly be attached to form a RC circuit. To obtain

the same noise level as the cold RC circuit, the room temperature capacitor would need

to be ∼0.4 F, an extremely large capacitance! Even if such a large capacitor existed, it

would make the measurement circuit respond too slowly in any case.

A feasible and elegant way to achieve our goal is to put in another resistor at the base

temperature to serve as a cold voltage divider shown as Rd = 100 Ω in Fig. 6.4. In this

manner, even with a moderate capacitor C = 2µF at room temperature and a large

biasing resistor Rb = 100 kΩ, the voltage noise after the cold divider is a thousand

times smaller than that at room temperature and is ∼50 pV. Together with the cold

capacitors, the new microwave measurement scheme does not only bring a much better

resolution in microwave spectrum, but also makes possible quantum state tomography
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using microwave field quadratures, as will be discussed in Section 6.2.
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Figure 6.4: Improved microwave measurement scheme for the cCPT experiments.

Just as “there is no such thing as a free lunch”, the much-improved microwave measure-

ment scheme does not come without any expense. By adding the cold divider grounded

in the mixing chamber, we have gave up our direct means of monitoring the CPT cur-

rent. It is straightforward to figure out an indirect method to calculate the CPT current

in the new biasing scheme:

ICPT =
IdRd − VCPT

R1k
≈ VdcRd/Rb − VCPT

R1k
(6.3)

where R1k is the 1 kΩ protective resistor, and the current flowing through the divider

resistor Id can be approximated by Id ≈ Vdc/Rb. This is a good approximation only

when the CPT differential resistance RCPT is large. But since the I − V slope varies

significantly around the supercurrent regime, the accuracy of the approximation is not
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be very consistent. For this reason, current sensitivity in this setup is not as good as in

the original setup [see Fig. 6.4]. We therefore decided to take advantage of both schemes:

the dc measurement results presented in Chapter 6 are measured by the previous scheme,

while most of the microwave spectrum and all quadrature measurement data are taken

using the new one.

6.1.4 Shot Noise Calibration of the Amplifier Chain

An important parameter of microwave measurement setup is the effective total gain G

of the whole amplification chain from the sample cavity input to the room temperature

FET amplifier output [see Fig. 6.4]. Taking into account the insertion loss of the cavity,

the loss on three circulators, the loss on both cold and warm coax cables, the HEMT

amplifier gain, and the FET amplifier, these values calibrated at room temperature

add up to G ≈ 69 dB. Since the performance of the microwave components is slightly

different at the fridge base temperature, we need to calibrate G when the microwave

line is cold. In this case, we do not have a direct access to the cavity except through the

microwave input line, which adds another factor of uncertainty in and of itself.

Instead, a standard method to calibrate the cold amplification gain in the CPT experi-

ments is to take advantage of the shot noise generated by the cCPT. At high source-drain

bias, a bare CPT with two symmetric junctions has a shot noise current spectral density

[49],

SI =
eVdc

RCPT
= eIdc (6.4)
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where RCPT is the normal resistance of the CPT when biased well above the supercon-

ducting gap. In the cCPT system, the measured CPT shot noise is modified by the

presence of high-Q cavity. To derive the expression for cCPT output shot noise, we as

usual model the CPW cavity as a parallel LCR circuit with a resonant frequency ω0. We

assume the cavity is driven by the shot noise current of the CPT with spectral density

SI as in Eq.(6.4). A lumped element model of a CPW resonator coupled to a dissipative

CPT driven by a current noise source, is shown in Fig. 6.5.

L RC R
CPT

I
n

Figure 6.5: LCR lumped elements of a CPW resonator coupled to a dissipative CPT
resistance, driven by a current noise source.

Applying Kirchoff’s laws to the circuit, the voltage noise spectral density at the cavity

output can be derived as

SV (ω) = (
ω

C
)
2 eSI

(ω2
0 − ω2)

2
+ (ωω0/QL)2

(6.5)

where QL is the loaded Q of the cavity taking into account the additional loading of

dissipative CPT resistance. The loaded Q is thus given by Q−1
L = Q−1

C + Q−1
CPT, where
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QCPT = ω0RCPTC and QC is the original cavity “loaded Q” without additionally CPT

dissipation.

The total voltage noise over the entire bandwidth of the resonance can is given by the

integral

〈V 2
n 〉 =

1

2π

∫
ω
SV dω =

eIdcQL
4ω0C2

. (6.6)

The total stored energy, including both electric and magnetic energy, is

E = C〈V 2
n 〉 =

eIdcQL
4ω0C

. (6.7)

Finally, the noise power at the cavity output port is given by

Pc = κoutE ≈ κtotE =
eIdc

4C

QL
QC

(6.8)

where we have used the condition that κout � κin and κtot ≈ κout. The noise is then

amplified by the amplifier chain with a effective gain G, giving the room temperature

noise power:

Pn = GPc =
eG

4C

QL
QC

Idc . (6.9)

By driving the CPT into the above-gap regime, while collecting the output noise power,

we can plot Pn versus Idc as Fig. 6.6.

We know that the cavity QC ≈ 3500 and the cavity effective capacitance C = π/ω0Z0 =

1.9 pF. The loaded QL can be obtained from curve-fitting the output spectrum at high
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Figure 6.6: Noise power Pn (red dots) at the output of the amplifier chain versus
CPT current Idc, linearly fitted by two lines (solid lines).

dc biases, giving an average QL ≈ 900. Using these values and the average slope from

a linear fit to Pn versus Idc, we determine the total G = 68 dB. This is in excellent

agreement with room temperature calibration, with a deviation of only 1 dB.

In addition, the intersection B of the high-current linear asymptotes of Pn extrapolated

back to Idc = 0 determines the system noise (dominated by the HEMT amplifier), i.e.

B = G∆f kBTsys, where ∆f is the measurement bandwidth of the output noise. This

gives a system noise Tsys = 31 K, higher than the HEMT noise temperature THEMT = 8 K

specified by the manufacturer. Losses on the cable and three circulators between the cav-

ity output and HEMT input are likely to give rise to the larger system noise temperature.

Finally, the number of HEMT noise photons is calculated as nh = kBTHEMT/~ω0 ≈ 123.

The number of added noise photons is important for quantum state tomography, the

topic of the next section.
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6.2 Quantum State Tomography

The quantum state of any physical system can be completely characterized by its density

matrix or equivalently an quasi-probability distribution such as the Wigner function

defined in Eq. (1.3). Nonetheless, given a prepared state of a quantum system, its

very quantum nature makes it impossible for a person to determine the state without

disturbing the system, just as in the Schrödinger’s cat experiment in Fig. 1.1. One

way to circumvent this problem is to prepare an ensemble of identical state, make a set

of observations of the state, and build up a histogram of the outcomes. A probability

distribution of the system can then be reconstructed through data analysis and the

whole process of probing the state is called quantum state tomography (QST) [83].

As will seen in Chapter 7, our electrical and microwave measurement results let us

strongly suggest that the cavity photon field of the cCPT system exhibits non-classical

features of light. We therefore would like to apply QST, which has been widely used for

optical fields of light [83], to the microwave emission of the cCPT.

Before we proceed, it is worth explaining what we mean by “quantum” or “non-classical”

states. If you are convinced the quantum theory is more fundamental than its classical

counterpart [as in Section 1.1], you may think that no state should be classical. Bor-

rowing from George Orwell [84], we could well say that all states are quantum, but some

states are more quantum than others.

To clarify the meaning of “quantum” or “non-classical”, we will review some basics of

quantum optics, phase-space probability distributions in particular. Subsection 6.2.1
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follows the discussion in Gerry & Knight [5].

6.2.1 Phase-space probability distributions

Besides the Wigner function, two other probability distributions are widely used, namely

the Glauber-Sudarshan P function and Husimi Q function. Any density matrix ρ can

be represented as a linear combination of coherent states |α〉 with the P function being

the coefficient:

ρ =

∫
α
d2αP (α)|α〉〈α| (6.10)

where
∫
α ≡

∫
C dα is defined as the integral over the complex plane. As the P function

can be negative or highly singular for some quantum states, it is a quasi-probability

distribution like the Wigner function.

The Q function corresponding to density matrix ρ is also defined via coherent states |α〉

as:

Q(α) =
1

π
〈α |ρ|α〉. (6.11)

Since the Q function is positive for all states, it can be considered as a true probability

distribution.

In addition, the Wigner function can also be related to the corresponding density matrix

ρ by

W (x, p) =
1

h

∫ +∞

−∞
〈x+

1

2
x′ |ρ|x− 1

2
x′〉e−ipx′/~dx′. (6.12)

108



Chapter 6. Measurement & State Reconstruction Techniques

The Wigner function turns out to be very useful for distinguishing between quantum and

classical states, because it is very sensitive to certain quantum features and it is always

well-behaved. For example, we consider two representative quantum states of light, i.e.

the most quantum state, the Fock (photon number) state; and the most classical of the

quantum states, the coherent state. The Wigner function for a Fock state |n〉 is

W (α) =
2

π
(−1)nLn(4|α|2)e−2|α|2 (6.13)

where Ln is a Laguerre polynomial. For the coherent state ρ = |β〉〈β|, the Wigner

function is

W (α) =
2

π
e−2|α−β|2 . (6.14)

From the above formulas, it is clear that for a Fock state, the Wigner function is oscil-

latory and negative over a large region in phase space, whereas it is a totally positive

Gaussian distribution for a coherent state. As a matter of fact, the negativity of a

Wigner function is a signature of a quantum state; a state with a partially negative

Wigner function is considered to be quantum or non-classical. The converse, however,

is not always true.

We thus bring in another indicator of the nature light as well as the photo statistics,

namely, the Fano factor. It is defined as

F =
〈n2

ph〉 − 〈nph〉2

〈nph〉
(6.15)
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where nph is the photon number of the system. It essentially measures the variance

of photon number relative to the average photon number. Typical values of the Fano

factor are: F = 0 for a Fock state, F = 1 for a coherent state and F = 〈nph〉 + 1 for a

thermal state. A state with 0 < F < 1 is also non-classical, because it is an amplitude

(number) squeezed state and exhibits sub-Poissonian photon statistics, even though its

Wigner function could be completely positive.

6.2.2 Microwave Field Quadrature Measurement

Quantum state tomography was first realized in the optical frequencies for the full re-

construction of a single cavity state, using both homodyne and heterodyne detection

schemes [83]. For microwave frequencies, we implement the heterodyne analog of the

optical techniques, the microwave field quadrature detection scheme, for characterizing

photons escaping the cCPT cavity.

Detection Scheme

G

IQ mixer

h

LO

 ADC

a X

PLinear Amplifier

Figure 6.7: Simplified microwave field quadrature detection scheme.
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A simplified microwave field quadrature detection scheme is illustrated in Fig. 6.7. The

cavity in the cCPT can be considered as a radiation field with a photon mode a. The

signal mode a is first amplified by a phase-insensitive linear amplification chain with an

effective gain G. During this amplification process, a noise mode h is also introduced to

the signal. Since G� 1, the system noise is dominated by the amplifier noise modified

by the cable loss, i.e. h ≈ hamp. The amplified signal is then combined with a LO signal

in a mixer and down-converted to conjugate quadratures X̂ and P̂ . Thus the complex

amplitude operator Â can be defined [85, 86]

Â ≡ a+ h† = X̂ + iP̂ . (6.16)

The amplification factor
√
G has been removed in this definition by referring Â to the

input of the amplifier. Assuming the signal a and noise h are not correlated with each

other, the probability distribution of Â can be expressed as the convolution [87]

D[ρa](A) =

∫
α
Ph(A∗ − α∗)Qa(α) (6.17)

where ρa denotes the density matrix of mode a, Ph(α) is the P function of noise mode

h, and Qa(α) is Q function of the signal mode a .

Detection Setup

In reality, the field quadrature detection experimental setup shown in Fig. 6.8 is a bit

more complex than the scheme shown in Fig. 6.7. The amplification chain before the
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Figure 6.8: Microwave field quadrature detection setup.

IQ mixer consists of a cold HEMT amplifier with ∼38 dB gain and a room tempera-

ture FET amplifier with ∼45 dB gain around the cavity resonance at ∼5 GHz. Two

identical Minicircuits Bandpass filters VBFZ-5500-S+ are inserted right at the room

temperature microwave output port to reduce noise. The amplified signal must then be

down-converted before it can be sampled by an analog-to-digital converter (ADC) board.

This down-conversion is conveniently done by a Marki IQ mixer IQ-4509, which mixes

the measurement signal with a local oscillator (LO) signal. In a heterodyne measure-

ment, the LO signal is offset from the cavity resonance by the intermediate frequency

(IF) fIF = 5 − 25 MHz, thus producing the two IQ conjugate quadratures of the IF

signal at fIF, well within the frequency range of the data acquisition board. In order to

reach the amplitude range of the board of a few mV, the down-converted IF signal is

amplified again by a Minicircuits ZFL-500LN amplifier with ∼30 dB gain. The signal

after the final amplification stage is again filtered by a low-pass filter before it is fed into

the ADC converter. In the end, the signal is digitized by an AlazarTech dual-channel

16-bit waveform digitizer card ATS9462 with a maximum sampling rate of 180 MS/s.

The IQ conjugate quadrature amplitudes of the IF signal, denoted by X and P , can be
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taken directly from the two arms of the mixer output. This process, however, is very

sensitive to imbalances and offsets in the mixer or the subsequent amplification chain.

To avoid this problem, we choose a different method only using one quadrature, i.e. the

so-called digital homodyne process [21] at the cost of a factor of 2 in signal to noise ratio

and some reduction of detection bandwidth.

The quadrature components X and P are related to the single channel IF signal

A(t) = M(t) cos(ωIFt+ φ) = X cos(ωIFt) + P sin(ωIFt) (6.18)

by Fourier transformation,

X =
2

T

∫
T
A(t) cos(ωIFt) dt (6.19)

P =
2

T

∫
T
A(t) sin(ωIFt) dt (6.20)

where the period of the IF signal is T = 2π/ωIF. The amplitude and phase information

can be extracted from the quadratures using

M =
√
X2 + P 2, φ = arctan(

P

X
). (6.21)

In our cCPT experiments, we set the IF frequency fIF = 5 MHz and the sampling rate of

the acquisition board to be 20 MHz, which means for every (X, P ) pair , 4 samples must

be taken by the ADC board. The integrals in Eqs.(6.19) and (6.20) are then simplified
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to

X =
1

2
(A(t1)−A(t3)) (6.22)

P =
1

2
(A(t2)−A(t4)) (6.23)

where A(ti), i = 1 − 4, are the four amplitudes of the single quadrature acquired in a

single IF period. Although this digital technique reduces the detection bandwidth to

the IF frequency, fIF = 5 MHz is large enough for our cCPT experiments as it is still

wider than the cavity bandwidth ∼1.5 MHz.

As calibrated in Subsection 6.1.4, the system noise temperature Tsys ≈ 31 K, dominated

by the HEMT amplifier noise. Thus the noise mode h is assumed to be well approximated

by a thermal field with average photon number ∼120, which is also not correlated with

the signal mode a. Under this verifiable assumption, the probability distribution of

Â, i.e. D[ρa](A), contains all information needed for reconstructing the signal density

matrix ρa.

We perform repeated measurements of Â and discretize the probability distribution

space into a two-dimensional histogram with a 1024 × 1024 grid. Two representative

measured histograms are shown in Fig. 6.9, where the complex amplitude A is relabeled

by the complex amplitude of a coherent state α.

A reference measurement for the amplifier noise is performed first, when there is no

detectable emission from the cavity itself. In this situation, the signal mode a is the

amplifier noise and the “noise” mode h is the vacuum state. Other histograms for cavity

modes are taken where the cCPT emits photons from the cavity at various resonant
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Figure 6.9: Measured quadrature histogram D(A) for cCPT output mode a (a) as
the amplifier noise and the noise mode h in the vacuum, (b) at the first cotunneling

feature ωd = ω0/2 with ng = 0.71.

features. In all cases quadrature data are collected for approximately 26 min, giving

a total of 7.86 × 109 data points per histogram. The density matrix of the state can

then be extracted from the noisy background through a numerical algorithm, namely,

maximum likelihood estimation.

6.2.3 Maximum Likelihood Estimation

The goal of maximum likelihood estimation (MLE) is to find a state of the system

that maximizes the probability of obtaining the observed experimental data set. This

method has been used in a wide range of fields, e.g. image processing and econometrics.

In the case of reconstructing a density matrix, it is guaranteed to generate a physically

plausible state, as all the requirements of a density matrix can be incorporated into the

MLE procedure [88]; we can constrain the reconstructed density matrix to be Hermitian,

positive semi-definite, and of unity trace.
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The Iterative MLE Algorithm

Each measurement of the quantum system ρ can be described by a positive operator

valued measure (POVM) Π̂j , which gives the corresponding outcome with a probability

pj = Tr[ρΠ̂j ]. A complete set of POVMs satisfies
∑

j Π̂j = 1. The measurement is

repeated many times, of which each outcome occurs fj times. The likelihood function

can then be defined as

L =
∏
j

p
fj
j =

∏
j

Tr[ρΠ̂j ]
fj . (6.24)

Given the measurement results, the most probable state ρMLE is the state that maximize

the likelihood L. It can be computed by an iterative procedure [89–91], which introduces

a non-negative iteration operator

R̂(ρ) =
∑
j

fj

Tr[ρΠ̂j ]
Π̂j . (6.25)

The iteration for updating the density matrix is then

ρk+1 = N R̂(ρk)ρkR̂(ρk) (6.26)

where N is a normalization factor giving Tr[ρk] = 1. In practice, both the phase space

and the Fock space must be truncated to finite dimensions; the phase space is discretized

as well. As a result, Ĝ =
∑

j Π̂j 6= 1. In this case, iteration (6.26) must be replaced by

ρk+1 = N Ĝ−1R̂(ρk)ρkR̂(ρk)Ĝ
−1. (6.27)
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The above algorithm is often referred to as the “RρR algorithm” and shows fast con-

vergence over a variety of reconstructions. In the case that the likelihood function does

not increase monotonically, a “diluted” algorithm [92] can be introduced, in which the

iteration operator R̂ defined by Eq. (6.25) is modified as

R̂dil =
1 + εR̂

1 + ε
(6.28)

where the positive parameter ε specifies the step size of each iteration. For ε → ∞,

R̂dil reduces back to R̂. For ε → 0, the diluted algorithm is guaranteed to converge

monotonically.

Application of MLE to Noise Characterization

Let us apply the MLE procedure to the simplest scenario, where the noise mode h

is in the vacuum state. The noise reference measurement is in such a scenario and

a representative histogram is shown in Fig. 6.9(a). Since the vacuum state has a P

function Ph(β) = δ(2)(β), the distribution of the complex amplitude Â is simplified from

Eq. (6.17) to

D[ρa](A) = Qa(A). (6.29)

The POVMs are thus defined via

Tr[ρaΠ̂α]
.
= D[ρa](α) =

1

π
〈α |ρ|α〉 (6.30)
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where the amplitude operator Â is again relabeled by the amplitude of a coherent state

α. The POVMs are then determined by Eq. (6.30):

Π̂α =
1

π
|α〉〈α|. (6.31)

In the Fock basis, the matrix elements of the operator Πα are

Πnm
α =

1

π
〈n|α〉〈α|m〉 =

1

π
e−|α|

2

|α|n+m e
i(n−m)θ

√
n!m!

(6.32)

where α = |α|eiθ.

As estimated from the shot noise calibration in Section 6.1.4, the number of system noise

photons is Nsys ≈120. In order to reconstruct the noise distribution with high accuracy,

a Fock space of a dimension d ∼ 10Nsys ∼ 1000 needs to be taken into account. Another

space involved in this algorithm is the discretized histogram space with a dimension of

1024× 1024. Given these large dimensions, if one wants to store all the matrix elements

Π̂nm
α of all accessible POVMs with double precision, one needs a computer memory of

10002 × 10242 × 8 ≈ 8 TB! Even if we re-bin the histogram by a factor of 2 or 4, the

memory required is still well beyond the computational power available to us. This

leaves us the only other approach for Π̂nm
α , i.e. calculating all these elements each time

for each iteration, which is also very computationally demanding.

Fortunately, we can see from Eq. (6.32) that the magnitude |Πnm
α | and complex phase

factor of the element ei(n−m)θ can be calculated separately and combined at the end. If
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we take the natural logarithm of the magnitude, we have

ln |Πnm
α | = −|α|

2 + (n+m) ln |α| − lnπ − 1

2
lnn!− 1

2
lnm!. (6.33)

The terms that really consume computational power are only lnn! and lnm!, which

can be calculated once for all by Mathematica, stored in a file and stored in the RAM

at runtime. The complex phase factor ei(n−m)θ = cos (n−m)θ + i sin (n−m)θ. Both

the sine and cosine terms for different n and m can be calculated from the well-known

recurrence relations widely used in Fast Fourier transforms. In addition, because of the

symmetry of the α phase space, the number of these calculations can be reduced by a

factor of 4 or even 8. More importantly, numerical analysis shows that for each α, the

magnitude of the matrix element |Πnm
α | is peaked at around n ≈ |α|2 and m ≈ |α|2

and decays as n and m deviates further from the peak. For a precision of ε = 10−16,

we calculate the dynamic range of n and m that need to be taken into account for |α|

up to 40. We find that on average the number of elements that are significant enough

to be calculated is about an order of magnitude smaller than the original number of

elements. With all these computational shortcuts, the complexity of the algorithm has

been reduced by more than 95%. It is then programmed in C++ code and run on the

Dartmouth Discovery cluster [93].

Applying the above algorithmic procedure to the reference histogram [Fig. 6.9(a)], the

noise state ρh is then reconstructed. Its diagonal elements are shown in Fig. 6.10

and are well approximated by a thermal distribution with average photon number n ≈
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Figure 6.10: Diagonal density matrix elements for the reference noise mode recon-
structed by the iterative MLE method. The photon distribution (red dots) is well de-
scribed by a thermal distribution (blue solid line) with average photon number n ≈ 123.
To show the curve fit clearly, the density of data points displayed has been reduced by

a factor of 10.

123, in perfect agreement with the shot noise calibration. The maximum value of the

off-diagonal elements is less than 5 · 10−5 and is thus negligible. We have therefore

experimentally verified the assumption that the noise mode h being in a thermal state.

We can now proceed to extract the signal from the noise background.

Application of MLE to Signal Extraction

For a system with a signal mode a buried in a thermal noise mode h, the modified

POVM Π̂ρh
α obeys

Tr[ρaΠ̂
ρh
α ]

.
= D[ρa](S) =

∫
α
Ph(S∗ − α∗)Qa(α)d2α (6.34)
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and is thus given by

Π̂ρh
α =

1

π
Th(α)ρ̃hT

†
h(α) (6.35)

where the displacement operator is defined as Th(α) ≡ eαh†−α∗h and ρ̃h is the most likely

density matrix of the reflected histogram Qh(−α∗) [86].

In principle, using the procedure described in Subsection 6.2.3, ρ̃h can be reconstructed

from the noise histogram and Π̂ρh
α can then be calculated via Th(α). Nevertheless, given

the large Fock space we need to use, we would rather avoid the matrix multiplication

in Eq. (6.35) for every α. It turns out that given the fact that the noise mode is well

approximated by a thermal field with an average photon number n̄, the matrix element

of the modified POVM Π̂α have a closed form expression:

〈m|Π̂ρh
α |n〉 =

n̄n

π(n̄+ 1)m+1

√
m!

n!
|α|n−me−i(n−m)θ exp[

−|α|2
n̄+1

] Ln−mn

[
−|α|2

n̄(n̄+ 1)

]
(6.36)

where Lkn is an associated Laguerre polynomial and n ≥ m. The other half of elements

with n < m can be easily deduced by the Hermiticity of the matrix. The factorial terms

and complex phase factor can be calculated the same way as those for Π̂α [in Subsection

6.2.3].

Fortunately, the evaluation of the Lkn is not as difficult as it may seem to be. First,

given the strictly negative argument of Ln−mn (−z) (z > 0), its value is positive definite.

Also, a recursion relations exists for obtaining Lkn(−z) at fixed z for rising values of n.

Additionally, similar to the behavior of |Πα|, the magnitude |Πρh
α | is strongly peaked at

the diagonal n = m. It drops off so rapidly away from the diagonal that only elements
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with |n − m| ≤ 40 are greater than the tolerance ε = 10−16 for |α| up to 40. The

complexity and the runtime for calculating Πρh
α is therefore even more greatly reduced

than that for Πα.

Having implemented the above algorithm in a C++ program, a maximally likely state

of signal mode should in principle be found, given the measured histogram such as Fig.

6.9(b) and an initial state such as the maximally mixed state ρ0 = 1/d, where d is

the dimension of the reconstructed Fock space. Nonetheless, because the system has

a large number of thermal noise photons ∼ 100 as well as a comparable number of

cavity photons, the probability space of the likelihood function for the reconstruction

is relatively flat. The algorithm may not be able to converge to an optimal state with

maximum likelihood before it runs into numerical problems. Consequently, we extend

the MLE procedure by seeding the algorithm with different initial states and choose

the iteration that converges fastest and changes the least. To have an indicator of the

convergence rate, we define the relative change of subsequent matrices at iteration k as

C =
||ρk+1 − ρk||max

||ρk+1||max
(6.37)

where ||ρ||max = max {|ρij |} denotes the max norm of the matrix ρ.

We seed the algorithm with a diagonal matrix whose diagonal elements are given by

a discrete Gaussian distribution centered at its predetermined average photon number

nph and the width given by the assigned Fano factor F .

Using histogram 6.9(b), we seed the program with nph = 70, F = 0.1−1 and nph = 100,
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Figure 6.11: The convergence plots for the cavity emission field at first cotunneling
peak (a) and for the driven nearly coherent state (b).

F = 0.1, giving convergence plot shown in Fig. 6.11(a). By integrating the spectrum of

the cavity output field, we estimate nph at the first cotunneling peak to be about 70 [see

Fig. 7.7]. The convergence plot is indeed consistent with our estimate: a iteration with

a far off photon number nph = 100 diverges quickly, whereas all other iterations with

nph = 70 converge almost equally well, except the one with a Fano factor F = 1. This

implies that the cavity emission field is very likely to have a small Fano factor F < 1,

i.e. the cavity is in an amplitude squeezed non-classical state.

Similarly, when the cCPT is biased off resonance and no cavity emission occurs, we

drive the cavity with an external pure-tone signal at cavity resonance, producing a

nearly coherent state cavity. We can see in Fig. 6.11(b) that with roughly correct

photon number nph ≈ 100, an initial state with a Fano factor of F = 1 converges more

rapidly and better that the one with F = 0.1, which is exactly what we expect for a
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coherent state.

In conclusion, while we can not accurately determine the Fano factor from the extended

MLE procedure, we can distinguish between quantum and classical states of the cavity

field with Fano factor F � 1 and F ≥ 1 respectively.

Having reconstructed the density matrices of the photon fields, it is straightforward

to obtain the Wigner function distributions by utilizing QuTiP (Quantum Toolbox in

Python) [94], an open-source software for simulating the dynamics of open quantum

systems. The reconstruction results of the cCPT emission fields will be presented in

Section 7.3.
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Chapter 7

Results of the cCPT Experiments

Before beginning the experimental investigations on the cCPT system, it is worth briefly

summarizing the configuration and key parameters of the cCPT device we discuss during

the development process in Chapter 5.

CPW resonator

ground

V
dc

V
g

Z
b

ℏω
0

ℏω
0

S

D

λ/4

λ/2

CPT

Figure 7.1: Schematic illustration of the cCPT circuit
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The coplanar waveguide cavity is approximately 21.5 mm long, fabricated from 100

nm thick Nb film and is coupled at either end to the external transmission lines with

Z0 = 50 Ω characteristic impedance, via asymmetric input and output capacitors (Cin =

1.65 fF, Cout = 18.5 fF). The cavity has a fundamental full-wave resonant frequency

ω0 = 2π × 5.256 GHz and a quality factor Q ≈ 3500, giving a photon decay rate

κ ≈ 2π × 1.5 MHz.

The wavelength long cavity is modified by placement of dc bias lines at the voltage

nodes located one quarter wavelength from either end of the cavity as shown in Fig.

7.1. These bias lines allow application of a dc bias voltage Vdc to the center conductor

of the cavity without affecting the microwave properties of the cavity at its resonance

frequency through a biasing impedance Zb = iω0Lb (Lb ≈ 6 nH).

The CPT is located at the voltage antinode at the center of the main full-wave resonator.

It consists of a 7 nm thick superconducting Al island and 70 nm thick source and

drain leads, forming two almost identical ∼ 70 × 70 nm2 Josephson junctions in series.

The source and drain leads are in direct electrical contact of the center conductor and

the ground of the cavity, respectively, via proximized 30 nm thick Au/Ti contact pads

without introducing additional dissipation. A separate gate voltage Vg is applied to the

CPT island through a capacitance Cg to adjust the electrostatic potential via the gate

charge ng = CgVg/e.

Escaping photons can be measured by microwave circuitry connected to the cavity’s

output port while the dc bias lines are simultaneously used to probe electrical transport
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in the CPT.

For our purposes, the CPT is well described by considering only two charge states, |0〉

and |1〉, corresponding to zero and one excess Cooper pairs on the island. These charge

states are separated by a gate-dependent electrostatic energy difference 2ε = 4Ec(1−ng),

and coupled to each other via the Josephson energy EJ . The Hamiltonian of the cCPT

is thus reduced from Eq.(4.33) to

H = ~ω0a
†a+ εσz − EJ cos

[
∆zp(a+ a+) + ωdt

]
(7.1)

where σx and σz are the Pauli matrices. The first two terms in Eq.(7.1) describe the

cavity photons and the CPT charge. The third term describes the coupling between

charge states, between the CPT and the cavity photons, and the effects of the voltage

drive. In a standard CPT (with no cavity and at zero bias), this term would read

EJσx cosϕ/2, where ϕ the total superconducing phase difference between the source and

drain, can be treated as a classical variable. In our case, however, quantum fluctuations

of the cavity photon field must be accounted for via the identification ϕ̂/2 = ∆(a+ a†),

which proportional to the electric field in the cavity at the location of the CPT. The

dimensionless parameter ∆ =
√
Z0/RK ≈ 0.04 describes strength of the quantum phase

fluctuations of the cavity field, which can be important for large numbers of photons in

the cavity.
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7.1 Electrical Transport in the cCPT

Much can be learn about the cCPT by simply measuring its current ICPT versus dc bias

voltage Vdc and gate charge ng, the two macroscopic parameter of the CPT that we have

direct control of; a representative image plot of ICPT(Vdc, ng) is shown in Fig. 7.2.
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Figure 7.2: Current ICPT through the CPT vs. Vdc and ng

The data clearly shows that for sufficiently low Vdc the CPT current is 2e periodic (period

70 mV in Vg), the transition between 2e and e periodicity occurs at Vdc ≈ 150µV. This

behavior is an indicator that only Cooper transport is significant for Vdc < 150µV and

quasiparticle trapping on the island is minimal, so the “poisoning” of the 2e periodicity

of ICPT has been avoided.
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More significantly, the map of ICPT clearly displays a tremendously rich structure,

mainly consisting of two parts: a large number of vertical lines, and a somewhat smaller

number of diagonal ones. Structures similar to both sets of lines have been seen several

similar systems [67, 95–97] consisting of a CPT or SET coupled to either intentional

or unintentional low-Q resonances. The features in Fig. 7.2 are unusual, however, in

that they are both very sharp and very numerous. In general, these two sets of lines

correspond to two distinct varieties of transport processes attributable at the interaction

of the CPT with the cavity. They are clear indications of strong couplings between the

CPT and the cavity as will be described in detail below.

2eV
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D
D
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ℏω
0
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Figure 7.3: Sequential tunneling across the island-drain junction and co-tunneling
across the CPT both with simultaneous net photon emission.

First, there are sequential tunneling processes involving photon emission, as indicated

by diagonal lines in Fig. 7.2. Such processes involve an allowed transition of a Cooper

pair across either the source or drain junction, combined with net emission of a photon

into the cavity, as illustrated in Fig. 7.3(a).
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Second, there are also higher order virtual processes, i.e. cotunneling, indicated by

the vertical line with a spacing in Vdc of roughly 11µV in Fig. 7.2. Here, as shown

schematically in Fig. 7.3(b), a Cooper pair is transferred from the source to drain

through an energetically forbidden state, again with net emission of a photon into the

cavity [96].

It is important to note that in the presence of large numbers of cavity photons, each

process can be enhanced by the simultaneous absorption of photons, i.e. stimulated

emission of photons in expected to be important, as indicated schematically in Fig. 7.1.

To investigate the coupling of the CPT to cavity photons more carefully, we restrict

ourselves to very low applied voltage (Vdc < 30µV) and concentrate on the first two

cotunneling features at Vdc ≈ 11 and 22 µV in the current map as indicated in Fig.

7.4(a). By way of the ac Josephson effect, the dc bias gives rise to a characteristic drive

frequency ωd = 2eVJJ/~ ≈ eVdc/~, which can be viewed approximately as the frequency

of Josephson oscillations across each junction. Here VSD is the source-drain voltage that

exists at the CPT. Note that due to the nonlinearity of the system and the presence

of the bias impedance Zb, VSD in general can differ from the applied voltage Vdc. The

cotunneling features at Vdc ≈ 11 and 22 µV, therefore are an indication of the drive

frequencies at ωd ≈ ω0/2 and ω0, respectively. Referring to the diagram for cotunneling

in Fig. 7.1(b), these features correspond to the emission of one or two photon into the

cavity during Cooper pair tunneling.

Furthermore, detailed behavior of the CPT current I versus the measured source-drain
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Figure 7.4: Transport in the cCPT. (a) Current versus Vdc and ng showing the
portions of the parameter space chose for investigation. (b) I − V characteristic for
two sweep directions, as indicated, along horizontal magenta line in (a). The vertical
dashed red and blue lines indicate the locations of the first and second cotunneling

features at Vdc = 11µV and 22µV respectively.

voltage Vdc is shown in Fig. 7.4(b) at a particular gate charge far from the charge

degeneracy points ng = ±1. The current is strongly hysteretic in Vdc, indicating the

presence of bistability in the cCPT dynamics. Furthermore, these are sharp current

steps at fixed voltages, nearly evenly spaced Vdc. These steps in current correspond to

the bright vertical cotunneling lines visible in Fig. 7.4(a).

The structure of individual I − V characteristics as in Fig. 7.4(b), with a steep rise in

current at a fixed voltage bias are reminiscent of two phenomena from study of large
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area Josephson junctions, namely Shapiro steps [98] and Fiske modes [99, 100]. In both

cases, phase locking between a microwave electromagnetic field at frequency f0 and the

Josephson oscillations of a junction subject to a dc voltage bias, lead to series of steps

in the I − V characteristic at voltages such that fd = nf0 where n is an integer. This

occurs because the phase across the junction arises from both ac and dc sources. In the

case of Shapiro steps the electromagnetic field is from an external source, while in the

case of Fiske modes it is self-generated when a dc bias is applied. When the Josephson

drive frequency fd is equal to a multiple of f0, the ac and dc phases lock and a non-zero

dc current results. It is important to note that both Shapiro steps and Fiske modes are

classical phase locking phenomena, since the Josephson phase difference is a classical

variable in large area junctions [40].

Given the similarity of our data to the above phenomena, it is reasonable to suppose

that we are observing phase locking of the CPT with a self-generated field produced

by photon emission into the cavity. In fact a detailed theoretical analysis [62] of the

cCPT indicates that such emission can in fact occur. Furthermore, since the photons

emitted by the CPT are confined to the cavity for a significant period of time due to the

large cavity Q, the current steps are an indication that the very photons generated by

the tunneling Cooper pairs are in turn directly influencing other tunneling events and

subsequent photon emission, i.e. they constitute direct evidence for stimulated photon

emission.
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7.2 Photon Emission in the cCPT

7.2.1 Electrical Transport & Photon Emission Correspondance

Note that phase locking in the cCPT system differs significantly from that in Fiske

modes, for instance. In particular, non-trivial quantum correlations may well exist in

the total phase across the CPT, and the state of the photon field inside the cavity could

be strongly non-classical. There has been a great deal of attention lately on the closely

related notion single artificial atom lading, consisting of much theoretical work [101–103]

and a single experiment result [67]. While that result is similar to ours in that in involves

an SET embedded in a microwave cavity, there are important differences as well: the

SET/cavity coupling was capacitive rather dc; the SET was operated on the Josephson-

quasiparticle (JQP) resonance at high bias, so that generation of quasiparticles during

transport limited the quantum coherence of the overall system.

In contrast, a measurement of photon emission from the cCPT system using measure-

ment scheme in Fig. 6.2, shows clear evidence of phase locking, proving the presence

of stimulated emission in our devices. This can be seen in Fig. 7.5, which shows both

the CPT current and simultaneous photon emission at 5.25 GHz for several values of

gate voltage. The emission data are collected while sweeping the dc voltage bias down

along the solid horizontal lines in Fig. 7.5(d). As can be seen in Fig. 7.5(a)–(c), when

the Josephson drive frequency fd approaches a multiple of cavity resonant frequency,

the CPT oscillations at fd suddenly “snap” to match the cavity resonant frequency, and
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quency fd for three different gate charges. Emission is measured along the green, cyan
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emission suddenly turns on. This behavior is a clear indication of phase locking and

strong Cooper pair/photon coupling.
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7.2.2 Features in Photon Emission Spectrum

As discussed in Subsection 6.1.3, the noise in the dc bias voltage Vdc and accompanying

jitter in the drive frequency ωd can be minimized by switching to the setup shown in Fig.

6.4. Again, we collect the microwave power emitted by the cCPT for a series of different

values of ng for bias voltages surrounding the cotunneling features near Vdc = 11µV

and 22µV. The results from the new scheme, e.g. Figs. 7.6 and 7.7, display a great

improvement of the photon emission stability over Fig. 7.5 as expected.
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GHz for the first (a) and second (b) cotunneling peaks along the red and blue vertical

lines in Fig. 7.4(a).
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In Fig. 7.6, each vertical band in the data was collected by measuring the output power

spectral density S of the cCPT versus frequency over a narrow range of applied voltage

Vdc at specific gate voltage. The gate voltage was then stepped and the measurement

of S repeated. For both set of data Vdc was swept from low to high bias.

For both cotunneling features, there is clearly strong emission close to the cavity res-

onance frequency ω0; this is particularly striking for the first cotunneling feature, for

which the drive frequency ωd = ω0/2. Emission at twice the drive frequency is a di-

rect consequence of the strong nonlinearity of the system. The emission pattern is 2e

periodic, as is the electrical transport, and shows interesting structure versus ng. In

particular the emission for ωd = ω0/2 appears to develop internal structure for ng ≥ 0.6

while for ωd = ω0 there is a clear “hot spot” in the emission for ng ≈ 0.7. In both

cases, the emission dies out as the gate charge approaches the charge degeneracy points

at ng = ±1.

A detailed view of the emission at ωd = ω0/2 and ωd = ω0 reveals numerous additional

interesting features, as shown in Fig. 7.7, which shows the emission spectra S(ω) and

cavity photon occupation nph versus applied voltage Vdc at representative values of gate

charge ng for both the ωd = ω0/2 and ωd = ω0 cotunneling features.

For the ωd = ω0/2 resonance in Fig. 7.7 we see that as might be expected for a single-

atom emitter there is no clear sign of a lasing threshold, with the cavity occupation

nph climbing smoothly from zero as Vdc is increased. For low Vdc ≤ 13µV the emission

linewidth of roughly 1 MHz shows modest narrowing over the intrinsic cavity linewidth
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All emission spectra are plotted versus detuning ∆f .
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κ = 1.5 MHz. At Vdc ≈ 13µV, there is a sudden sharp change in the emission pattern:

the linewidth suddenly drops by roughly an order of magnitude, to as low as 70 kHz.

The cavity photon occupancy nph reaches a maximum value on the order of 100 before

dropping sharply, stabilizing briefly, and then rapidly declining.

Strikingly, as charge degeneracy is approached, the sharpened spectrum splits into two

narrowly separated peaks at around ng = 0.62. The separation of these peaks increases

as ng approaches charge degeneracy. Furthermore, there is a notable shift in the emission

frequency toward negative detuning for the same gate voltage range, and an even more

notable shift toward negative detuning for large nph. This latter tendency results in the

characteristic “V” shape of the emission versus Vdc.

For the ωd = ω0 emission spectra share some features with those for ωd = ω0/2; there

are, however, significant differences as well. There is again no clear sign of a threshold

as Vdc is increased, and there is again a tendency though less pronounced pulling toward

negative detuning as charge degeneracy is approached or nph is increased. There is

no sudden sharpening of the spectrum in this case; instead, the emission simply cuts

off abruptly for Vdc ≥ 23µV, just after the cavity reaches its maximum occupancy of

roughly nph ≈ 200. The minimum linewidth of the emission spectra is roughly 500 kHz,

significantly below the bare cavity linewidth, but not by as much as that for the ωd = ω0

resonance.

Some aspects of this behavior can be explained within a semiclassical model of the

cCPT system [104]. The emission of cavity photons at ω0 for both ωd = ω0/2 and
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ω0 resonances can be explained dynamically by considering the time dependence of

the drive term σx cos [∆(a+ a†) + ωdt] in the cCPT Hamiltonian. It can be shown

that σx oscillates at odd harmonics of the drive frequency ωd; the nonlinearity of the

system in the form of the product σx with a sinusoidal function of ωd leads to an

overall oscillation at the cavity resonant frequency ω0. The semiclassical analysis also

correctly predicts the approximate number of photons nph in the cavity for both cases.

Additional progress can be made by treating the CPT when far from charge degeneracy

as an effective single junction system. Under this approximation, and using either a

rotating wave approximation or a semiclassical approximation, it can be shown that the

ωd = ω0/2 resonance can, for sufficiently large amplitude, undergo a bifurcation that

leads to spectral splitting similar to that in Fig. 7.6. Nonetheless, many aspects of the

emission remain unexplained, making the cCPT emission a rich topic for continued the-

oretical investigation.

7.2.3 Multiphoton Stimulated Emission Process

Another possible explanation for the spectral splitting in the cCPT spectra at various

values of gate charge ng along the first cotunneling feature [in Fig. 7.6(a)] could be the

occurrence of a strong resonance between the qubit states of the CPT and the cavity

photons. These resonances need to be considered separately for the two different junc-

tions, since the voltage drop across each junction can be different, and when completing

a charge/photon transport cycle transitions across different junctions will begin with a

different island charge state.
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Given that the CPT is embedded in a cavity containing many photons, the most general

kind of transition we can consider is one that involves absorption or emission of multiple

photons. Furthermore, since we are interested in a charge transport cycle that will

increase the number of photons in the cavity by one (since we are concerned with features

on the first cotunneling feature), it is reasonable to consider first two particular kinds

of transition, as illustrated in Fig. 7.8.

2eV
SD

S

D

I

k+1k

J2

J1

Figure 7.8: Schematic illustration of the charge/photon transport process involving
multiphoton emission.

First, we assume the CPT is grounded at one end (J2) while the other end (J1) is held

at a positive voltage Vdc. Cooper pairs will then tunnel onto the CPT through J2 and off

through J1. Furthermore, if the Cooper pair absorbs k photons when tunneling onto the

island it, it must then emit k+ 1 when tunneling off to guarantee conservation of energy

during the transport cycle. We therefore consider the processes 0 ⇒ 2 with absorption

of k photons through J2, and 2⇒ 0 with emission of k + 1 photons through J1.
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To determine the values of gate charge ng and bias voltage Vdc for which these processes

can be resonant, we turn to the combined charge/photon transition rules given by [95]

∑
i

κimi eVdc = 2 δmEc(n− ng + δm/2)± k~ω0 (7.2)

where m1(2) is the number of electrons tunneling across junction J1(2), δm = m2−m1, n

is the initial charge state of the island, ng = CgVg/e is the number of offset gate charge,

k is the number of photons emitted (+) or absorbed (–), and κ1(2) is the fraction of the

bias voltage dropped across J1(2). In this case, κ1 = (C2 + Cg)/CΣ and κ2 = C1/CΣ.

Eq. (7.2) is a simple extension of Eq. (4.9) to the case where photons are involved.

Using Eq. (7.2), we find that the transition 0 ⇒ 2 with absorption of k photons is

resonant for J2 along the line

κ2eVdc = 2Ec(−ng + 1)− k~ω0/2 (7.3)

while the the transition 2 ⇒ 0 with emission of k + 1 photons is resonant for J1 along

the line

κ2eVdc = −2Ec(−ng + 1) + (k + 1)~ω0/2. (7.4)

By inspection, it is clear that both transitions can be simultaneously resonant if 2eVdc =

~ω0. Solving for the resonant gate voltages we find that

ng = 1− k + κ2

κ1 + κ2

~ω0

4Ec
(7.5)
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so that there are a series of resonances along the line 2eVdc = ~ω0. If κ1 = κ2 = 1, then

Eq. (7.5) becomes

ng = 1− (k + 1/2)
~ω0

4Ec
. (7.6)

Note that for k 6= 0 all the resonances clearly describe stimulated emission processes.

For the measured capacitances of the cCPT device discussed in this chapter, namely

C1 = 1.08 fF, C2 = 1.14 fF, and Cg = 4.6 aF, we have κ1 = 0.515, κ2 = 0.485

and Ec = 36µeV = h × 8.7 GHz. The photon energy is ~ω0 = h × 5.26 GHz while

for reference the Josephson energy EJ = 63.6µeV = h × 17 GHz. Substituting the

measured capacitances, charging energies and photon energies into Eq. (7.5), we obtain

the following values of ng for which resonances are expected to occur, along with the

corresponding number k of photons absorbed:

k ng
0 0.93
1 0.78
2 0.62
3 0.47
4 0.32
5 0.17
6 0.02

Table 7.1: Expected values of the gate charge ng for the multiphoton resonances

The pattern formed by the resonances is illustrated in Fig. 7.9, which plots the lines

(7.4) and (7.3) versus ng in units of eVdc/4Ec. The zero-photon resonances for the 0⇒ 2

and 2 ⇒ 0 transitions are shown as solid black lines, while resonances from lines (7.3)

and (7.4) for k = 0 are shown as red and blue dashed lines respectively, which intersect
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Figure 7.9: Schematic illustration of the multiphoton resonances lines. As can be
seen in the figure, the k photon absorption process (red dashed lines) is simultaneously
resonant with the k + 1 emission process (blue dashed lines) at Vdc = ~ω0/2e for a
particular gate charge ng between 0 and 1. The entire set of resonances appears at
evenly spaced gate voltages along the line 2eVdc = ~ω0 defining the location of the first

cotunneling feature in the transport and emission measurements.

at 2eVdc = ~ω0 for a series different gate charges. The location of the kth resonance is

indicated by a green number.

To compare with experiment, we have plotted the locations in ng of the various reso-

nances from the table above as set of vertical dashed lines in the plot of emission versus

detuning and gate charge ng shown in Fig. 7.10. The agreement seems very good, with

new features in the emission spectra appearing at or near the resonance lines in several

cases. The level of agreement seems particularly notable for the k = 3 resonance, but is

also good for k = 1 and k = 2. Signs of splitting, while less noticeable, are even present

near k = 6.

While this simple pictures tells us the gate voltages at which the various resonances

occur, it does not tell us what happens in the vicinity of a particular resonance, e.g.
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Figure 7.10: Emission spectra versus detuning ∆f and gate charge ng for bias voltages
in the range of the first cotunneling feature at Vdc ≈ 11µV. The expected locations of

the various multiphoton resonances are shown as the vertical dashed lines.

the pulling of the emission frequency, which makes the cCPT emission a rich topic for

continued theoretical investigation.

7.3 Quantum State Reconstruction in the cCPT

Finally, we turn to the question of the nature of the photon field in the cavity, and

whether it is better described as a classical or quantum state. Intuitively, given the highly

quantum nature of the electronic/photonic transport in the cCPT we expect that the

cavity photon field most likely has non-classical correlations of some kind. For instance,

it is well known that in the cCPT Cooper pairs must tunnel one at a time; furthermore,
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it is clear from the I-V characteristics in Fig. 7.4(b) that the charge transport is phase

locked to the cavity photon field. This implies that Cooper pair tunneling events, and

therefore photon emission events, occur at more less equally spaced time intervals. As a

result, we expect that the photon statistics in the cavity should be sub-Poissonian; i.e.,

we expect the cavity Fano factor F = 〈n2
ph〉 − 〈nph〉2/〈nph〉 to be less than unity.

This expectation is supported by several theoretical calculations. Far from the charge

degeneracy points we again treat the CPT will act as an effective single junction sys-

tem. Making this approximation, and using either a rotating wave approximation, or a

complete quantum calculation in a Floquet basis, we find that the predicted Fano factor

for systems parameters comparable to the experiment is F ≈ 0.3, which would place the

system firmly in the quantum regime for which F < 1. In fact, suppression of photon

number fluctuations leading to a reduced Fano factor seems to be a generic property

of the system, whether biased on the cotunneling features considered here on on the

sequential tunneling features also visible in Fig. 7.2.

To investigate this question experimentally, we have performed full quantum state to-

mography of the density matrix ρa describing the cavity photon field by applying tech-

niques for state reconstruction using linear detectors to the cCPT. This is accomplished

for a given cavity state by measuring a histogram D[ρa](A) where A is the measured com-

plex cavity field output amplitude referred to the input of a cryogenic HEMT amplifier

with a system noise temperature Tn = 31 K. We use maximum likelihood estimation

to find an estimate for ρa that is likely to produce the measured distribution given the
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Figure 7.11: Quantum state tomography of the cavity field. We shown the Wigner
distribution Wa(α) of the cavity mode (top panels) along with the real and imaginary
parts of the density matrix ρa (bottom panels) for three different states of the cavity
field. a, Cavity biased on the ωd = ω0/2 resonance at ng = 0.42; for the reconstruction
shown F = 0.12. b, Cavity biased on the ωd = ω0 resonance at ng = 0.71; for the
reconstruction shown, F = 0.16. c. Cavity biased off resonance so that cavity emission
does not occur. In this case the cavity is driven by a coherent state such that it
contains roughly nph = 106 photons. For the reconstruction shown F = 1.6. The
transmitted photons were collected and analyzed in the same fashion as the internally
generated photons in a and b. In all cases the cavity field quadratures were sampled in
a 1024×1024 grid at a rate of 5 MHz by using digital homodyne detection. In all cases
data was collected for approximately 26 min, giving a total of 7.8× 109 data points per

histogram.
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presence of the amplifier noise. The density matrix ρa is in turn used to calculate the

Wigner quasi-probability distribution Wa(α) for the cavity field.

Results of these calculations are shown for three different cavity states are shown in Fig.

7.11 . For the ωd = ω0/2 resonance in Fig. 7.11(a), we see that the Wigner function

Wa(α) is sharply peaked near |α| = 8.7, in agreement with the estimated photon number

nph ≈ 73. Notably, there are regions for which Wa(α) is negative, an indication of

the quantum state of the cavity field. Interestingly, Wa(α) is not circularly symmetric

despite being a time average. This lack of symmetry can also be seen in Im(ρa), for which

substantial non-zero off- diagonal components exist, primarily in the matrix elements

Im(ρa)n,n±2 . For the ωd = ω0 resonance shown in Fig. 7.11(b), the behavior of Wa(α)

is similar, with a sharp peak occurring at |α| = 10.9. There is again a small negative

region in Wa(α), though less so than for the ωd = ω0/2 resonance. Some asymmetry is

present in Wa(α), as are non-zero off-diagonal components in Im(ρa), though neither is

as pronounced as for ωd = ω0/2.

In general, due to the large number of cavity photons nph ≈ 70 and noise photons

nh = kBTn/~ω0 ≈ 123 we find that the probability space for ρa is relatively flat, making

it difficult to determine the optimal ρa and there- fore the cavity Fano factor with

precision. For instance, for ωd = ω0/2 we find that ρa corresponding to states with

Fano factors in the range F ≈ 0.1− 0.3 describe the data equally well. The asymmetry

in Wa(α) shown in Fig. 7.11(a)(b) is present in all reconstructions, regardless of the

resulting value of F . Finally, some negativity is present in Wa(α) in all reconstructions

for the ωd = ω0/2 resonance with F in the range given above, although the negativity
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weakens for larger values of F . These results, in combination with the supporting

theoretical calculations mentioned above, provide strong evidence of the presence of a

continually generated non-classical state of light in the cavity that can be maintained

for minutes at a time.

While we cannot determine the precise value of the Fano factor for the cavity emission,

we note that can distinguish between quantum and classical states of the cavity field. To

demonstrate this, in Fig. 7.11(c) we drive the cavity with an external microwave signal,

producing a cavity state that is very nearly a coherent state. During this measurement

the cCPT was biased far from any resonances so that no measurable dc current flowed

and there was no detectable emission from the cCPT itself. Here, in contrast to the

cases for internally generated photons in Fig. 7.11(a)(b), best results are obtained for

a significantly broader Wigner function that is everywhere positive. Furthermore, there

is little sign of the asymmetry in Wa(α), and the off-diagonal elements of Im(ρa) are

significantly smaller.

In conclusion of this section, we demonstrated generation of non-classical microwave

photons in the cCPT by means of a new quantum coherent transport process involving

the interaction of Cooper pairs and photons. The cCPT may serve as a convenient, easy

to use source of amplitude squeezed light, and could form the basis of a new class of

electrical or photonic amplifiers. It could also serve as an important platform for the

study of the quantum dynamics of strongly nonlinear systems.
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Chapter 7. Results of the cCPT Experiments

7.4 Conclusions

Non-classical states of light, ranging from photon number states to quantum superposi-

tion states and squeezed light, are an important consequence of the nonlinear interaction

of light with matter. Such non-classical states are essential for the use of continuous vari-

ables for quantum information processing, and could allow for quantum-enhanced mea-

surement sensitivity. Ideally, one would like to produce large numbers of non-classical

photons in a steady stream and in a simple fashion.

In this dissertation, we presented evidence for continual production of such non-classical

states of light by means of simultaneous quantum coherent transport of Cooper pairs

and microwave photons. By applying a dc voltage to a superconducting artificial atom,

the Cooper pair transistor embedded in a superconducting microwave cavity, we use the

ac Josephson effect to inject photons into the cavity. The back reaction of the photons

on the artificial atom results in new regime of strongly correlated electronic- photonic

transport.

We performed full quantum state tomography of the cavity electromagnetic field using

maximum likelihood estimation of the photon density matrix, finding strong evidence

of the existence of an amplitude-squeezed state. The cavity-embedded Cooper pair

transistor (cCPT) offers great potential for study of the quantum dynamics of nonlinear

systems, and may lead to new paths for strong coupling between photons and other

quantum systems such as spins [105] or nanomechanical resonators [106].
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