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Abstract 

Mesoscopic physics is a fascinating realm in which classical descriptions are 

usefully applied but wherein quantum behavior is strongly manifest.  As such, it is an 

ideal arena for exploring the interplay between the classical and quantum worlds and the 

ways in which we can effectively control and coherently manipulate quantum systems 

with macroscopic inputs.  Focusing on coupling between macroscopic and quantum 

systems, the first area of research presented in this thesis is our discovery and exploration 

of a naturally occurring feedback loop in which the mechanical motion of a macroscopic 

semiconductor crystal is controlled by the statistical fluctuations of tunneling electrons  

[1].  The second area of research presented in this thesis is a description of our 

implementation of a system for the coherent manipulation of electronic spins using 

electron spin resonance.  

Consisting of a one-dimensional conduction channel and a tunable tunnel barrier, 

(quantum point contacts) QPCs are canonical quantum systems that display a rich array 

of physics  [2–6].  In our GaAs system through piezoelectric coupling, the QPC current I 

probes the deformation of the host crystal and generates a naturally occurring feedback 

loop.  Such systems with coupled mechanical and optical or electrical degrees of freedom  

[7], [8]  have fascinating dynamics that, through macroscopic manifestations of quantum 

behavior  [9], provide new insights into the transition between the classical and quantum 

worlds.   The feedback, which is naturally associated with backaction, has been predicted 

to have significant consequences for the noise of a detector coupled to a mechanical 

oscillator  [10], [11].  In our case the source of the backaction is shot noise, an intrinsic 
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noise source due to the stochastic partitioning of discrete charge flow by the QPC tunnel 

barrier. 

While ESR is conceptually relatively straight-forward, it is technically 

challenging to generate an ac magnetic field Bac large enough to manipulate spins fast 

enough to perform meaningful quantum computation operations.  In addition it is 

important to minimize the ac electric field Eac which can cause sample heating and induce 

unwanted photon assisted transitions.  As described in Chapter 3 in our ESR system, we 

address these issues by create a standing wave in a stripline and place the sample at a 

peak in Bac and a node in Eac.    
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1 Overview of Quantum Point Contacts and 

Quantum Dots  

1.1 Introduction 

Two of the most fundamental quantum nanostructures are quantum point contacts 

(QPCs) and quantum dots (QDs).   This chapter begins with a review of the basic theory 

and properties of QPCs and quantum dots including a discussion of fundamental 

parameters, GaAs/AlGaAs two-dimensional electron gases (2DEG) – the system in 

which these devices are often formed, one dimensional transport, and some 

characteristics of single and double quantum dots (DQDs).   As both QPCs and quantum 

dots are well suited for use as fast ultra-sensitive charge detectors, they have found wide 

scale application as measurement devices in numerous quantum information processing 

systems.  The chapter concludes with a discussion of the radio frequency application of 

these devices, including the low dissipation operation of a superconducting aluminum 

metallic island quantum dot, referred to as a radio frequency superconducting single 

electron transistor (RF-SSET).  

1.2  Fundamental Parameters 

 Ohm’s law I = GV is a macroscopic classical description of electronic transport in 

conducting media.  For individual electron quantum effects to be observed in a device, its 

dimensions must be smaller than or comparable to one or more of three important 
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characteristic lengths: the Fermi wavelength λf, the mean free path Lm, and the phase 

coherence length Lφ [12–16]. 

The Femi wavelength is the de Broglie wavelength of an electron with kinetic 

energy Ef  and is given in two dimensions by λf = 2π/kf = (2π/ns)
1/2

 where kf  is the Fermi 

wavevector and ns is the electron density. The mean free path is the length between 

scattering events for an electron, and is given by Lm = vf τ  where vf  is the Fermi velocity 

and τ  is the scattering time.  The phase coherence length Lφ is the distance over which an 

electron retains a definite phase during transport and is related to the coupling of an 

electron to the environment  [15],[16].
 

A submicron device patterned on the surface of a GaAs/AlGaAs heterostructure is 

an ideal system for studying quantum phenomena.  The properties of the high quality 

two-dimensional electron gas (2DEG) that can be formed at the heterostructure interface 

are why the system has been so widely utilized.  A typical density value of ns = 2 x 1011 

cm
-2

 yields a Fermi wavelength of λf = 50 nm which means that individual electrons can 

be trapped and probed in submicron devices.  The high mobility values achieved by 

crystal growers are on the order of μ = |E|/|vf| = 10
6 

cm
2
/Vs, where E is the electric field.  

This mobility value corresponds to a scattering time of τ = m
*
 μ/e = 40 ps which yields a 

mean free path Lm = 10 μm.  This means that transport in micron or submicron devices is 

ballistic.  Lastly, the phase coherence length Lφ increases with decreasing temperature 

and at temperatures below 100mk can stretch to 10’s of microns allowing coherent 

processes such as interference effects to be observed  [16]. 

By depleting the 2DEG with negative voltages applied to metallic surface gates, 

one-dimensional (1D) and zero-dimensional (0D) systems can be created.  Quantum point 
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contacts (QPCs) are used to form constrictions in the 2DEG and when properly designed 

yield clear signatures of 1D transport.  Multiple QPC constrictions can be combined to 

form OD dimensional pools of electrons. Known as artificial atoms or quantum dots 

(QDs) these systems display a rich array of physics and have been extensively studied   

[18], [19].  

1.3 GaAs/AlGaAs Two-dimensional Electron Gas 

 The high mobility μ and long mean free path Lm discussed above are largely the 

result of few scattering defects in the region of the 2DEG.  Grown with atomic layer 

precision using molecular-beam-epitaxy (MBE), the close lattice spacing of GaAs and 

AlGaAs makes an almost perfect crystalline interface possible.  Modulation doping in 

which the carrier dopants are spaced from the 2DEG interface is an additional important 

factor in achieving a clean low scattering interface  [20].  

 

Figure 1.1 A representative GaAs/AlGaAs heterostructure profile and corresponding 

conduction band edge.  The 2DEG forms at the GaAs/AlGaAs interface where a 

triangular potential drops below the Fermi level. (Figure adapted from reference [21]). 
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Figure 1.1 shows a typical wafer profile with the corresponding conduction band 

energy diagram.  The III-V GaAs/AlGaAs heterostructure architecture starts with a bulk 

GaAs substrate and then a very high quality block of GaAs of approximately a micron in 

thickness.  This is followed by 40 nm of AlGaAs, a thin Si dopant layer, 60 nm more of 

AlGaAs, and finally a 10 nm cap of GaAs to prevent oxidation.  Frequently termed a δ-

dopant layer, the Si layer has typical densities of 4 x 10
12

 cm
-2

.  In addition to removing 

the dopant defects from the interface, placing the dopants 10’s of nanometers from the 

2DEG helps smooth potential fluctuation introduced by the random nature of the lateral 

distribution of dopant  [21]. 

The formation of the 2DEG is a result of the conduction band offset and an initial 

mismatch in the bulk chemical potentials of the GaAs and AlGaAs layers.  At thermal 

equilibrium, electrons from the Si and AlGaAs layers fall into the GaAs substrate layer.  

The resulting space charge bends the conduction band energy forming a triangular 

potential at the heterostructure interface  [16], [20].  At typical electron densities and 

temperatures, only the first subband in the growth direction is occupied.  This confines 

the electrons to ~ 10 nm of the interface.  The second subband is separated from the first 

by ~ 150 meV  [16].  This energy is larger than the typical Fermi energy (7 meV), the 

ambient temperature (T < 1K = 86 μeV), and typical source-drain biases (VSD < 1 meV). 

1.4  Quantum Point Contacts and 1D Quantum Transport 

 A remarkable fact regarding QPCs is that while the constriction that they form 

may only be a few Fermi wavelengths long, they function as a 1D quantum conduction 

channel between the continuum of states in the open 2DEG  [12], [22].  A principle 
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signature of 1D quantum transport is quantization in the conductance G with plateaus 

corresponding to integer number of conduction channels.   

A simple model for the energy of an electron in a QPC is given by the 

Hamiltonian 

 

22

* *
( )

2 2

yx
pp

H eV y
m m

    1.1 

 

where V(y) is the transverse confining potential and m
*
 = 0.067 me is the effective mass of 

an electron in GaAs.  The effective mass m
*
 accounts for the periodic potential of the 

lattice.  Following the approaches in Berggren  [23], Laux  [24], and Cronenwett  [16] 

and taking the potential to be parabolic V(y) = ½ m
*
ωo

2
y

2
, the solution to Schrodinger’s 

equation yields a dispersion relation that includes a harmonic oscillator term for the 

quantized y energy values 
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These energy values are plotted in Figure 1.2.  Each parabolic subband corresponds to 

one of the transverse modes and includes a continuum of kx plane wave states.  The 

separation between the subbands is given by ħωo ~ 1-5 meV  [24]. 
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Figure 1.2  Energy dispersion curves for the first three 1D conduction channels 

(subbands) of a QPC.  The subbands are separated in energy by ħωo.  An applied bias 

between the source and drain μS- μD results in uncompensated right moving electron 

states which constitute a net current. 

 Interestingly the signatures of 1D transport for a QPC can be calculated 

independent of this dispersion relation and is general to transport in all 1D quantum 

systems.  The key to this remarkable fact is that in 1D the group velocity v(E)=1/ħ dE/dk  

is a scalar and its energy dependence cancels that of the spin degenerate density of states 

g(E) = 2/π (dE/dk)
-1

.  Intuition into this cancellation can be had by recognizing that the 

velocity v(E) has an increasing energy dependence while for the density of states g(E) the 

dependence is decreasing.   

In calculating the current, only the bias window eVSD = (μS- μD) between the 

source μS and drain μD chemical potentials needs to be considered.  For energies less than 

μD, the net current is zero as each k
+
 state is cancelled by a corresponding k

-
 state.  In 

calculating the current, each subband is indexed by n with its own group velocity vn(E) 

and density of states gn(E)  [12], [16], [22] 
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The factor Tn(E) is the transmission probability for the n
th 

subband and for small source-

drain biases VSD  can be approximated with its Fermi energy value Tn(Ef).  The factor of 

½ accounts for the discrepancy between the density of states gn(E) which includes 

positive and negative values of k and the current integral which is based only on the non-

cancelled k
+
  states  [25].  Calculating the conductance G = I/VSD yields the famous 2-

terminal Landauer formula which for ballistic transport ∑ Tn(Ef) = N  reads 

 

.
2 2

N
h

e
G   1.4 

 

Given its remarkable generality and dependence only on fundamental constants, the value 

Go is called the quantum conductance and has a value of Go ≈ 2e
2
/h = 77.4 μS which is 

the inverse of the quantum resistance RQ  = 1/Go ≈ 12.9 kΩ.  This is the inherent 

conductance (or resistance) associated with a 1D channel. 

 The steps in conductance of a QPC can be observed when the gate voltage Vg 

forming the constriction is varied.  By analogy, the QPC functions like an electron 

waveguide where each plateau corresponds to an integer number of quantum conduction 

channels.  As Vg is ramped to zero, successively higher transverse channels become 

occupied as their energies are brought below the chemical potential.  As seen in Fig. 1.3 

the plateaus occur at integral numbers of Go.7 
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Figure 1.3  Data from a DQD sample showing quantized conductance plateaus for the 

1D constriction of a QPC as a function of the gate voltage Vg.  The first half plateau 

corresponds to the 0.7 structure whose origin is an area of active research.  

1.5 Single Quantum Dots and Coulomb Blockade 

 In semiconductor implementations, a quantum dot is an isolated pool of electrons 

separated from the continuum states of the 2DEG by QPC tunnel barriers.  In a closed 

dot, the tunnel barriers are sufficiently opaque that confined electrons fill zero-

dimensional states analogous to those of an atom, and the number of electrons N on the 

dot is well defined  [18], [26].  The energy required to add an electron to the system 

includes not only the single particle energy EN of an electron in the dot but also the 

charging energy EC associated with the electrostatic repulsion of the confined electrons.  

Due to a required degeneracy in the thermodynamic potential Ω, Van Houton, Beenakker, 

and Staring,show  [27]  that with a small bias across a dot, conduction occurs whenever 

the difference in free energy of the system with N and N-1electrons is equal to the Fermi 
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energy Ef  of electrons in the leads.  That is, F(N) – F(N-1) = Ef.  As μ(N) ≡ F(N) – F(N-

1), the question of transport through a QD is therefore shown to map onto determining 

the free energy F(N) of the system.   

An analysis of the free energy F(N) of a QD is traditionally done in the context of 

the constant interaction (CI) model.  The CI model makes two primary assumptions.  

First, the Coulomb interactions between electrons on a dot can be described by a single 

capacitance C that is the sum of individual capacitances.  That is, C = Cs+Cd+Cg where 

Cs, Cd, and Cg are, respectively, the capacitance between the dot and the source, drain, 

and gates.  Second, the discrete energy spectrum for the dot is not affected by the number 

of electrons in the dot.   

As shown in Figure 1.4, the dot is modeled as an island capacitively coupled a 

gate with voltage Vg.  The tunnel junctions of the source and drain are represented as 

leaky capacitors where the capacitances Cs, Cd  are each in parallel with a corresponding 

resistor Rs, Rd.  As in the case of the QPC discussion above, the difference in chemical 

potential between the source and drain corresponds to the applied bias across the dot, 

eVSD = (μS- μD). 

 

Figure 1.4  Schematic model of a QD capacitively coupled to a gate voltage Vg.  The 

tunnel junctions to the source and drain leads are represented as leaky capacitors.  

  Under the CI model, the free energy F(N) of the dot with N excess electrons is 
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where the first term is due to the coulombic interactions between confined charges and 

the second term is the sum over the energies of the individual electronic states En  [26], 

[28], [29].  The coulombic interaction term includes a discrete component eN and a 

continuous component CgVg.  The discrete component N = N'-N0  accounts for trapped 

excess conduction electrons where N' is the total number of electrons on the dot and N0 is 

the number of electrons on the dot with zero gate voltage.  The charge N0  balances the 

background positive donor charge so that at Vg = 0 the system is neutral.  The continuous 

term CgVg accounts for the polarization charge of the dot induced by the gate voltage Vg.  

For any value of Vg, the number of excess electrons N on the dot is the value which 

minimizes the free energy F(N) expression 1.5.  This means that the number of excess 

electrons N can be varied externally by adjusting the gate voltage Vg.  

 Transport through the dot is most easily understood from the perspective of the 

chemical potential of the dot μd which with the definition above yields the expression   

 

')/()2/1()1()()( NggCd EVCCeENNFNFN    1.6 

 

where EC = e
2
/C is the charging energy of the dot.  The spacing between the discrete 

chemical potential levels is given by 

 

Eadd = Δμd = μd(N+1) - μd(N) = EC+ΔE 1.7 
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This difference in chemical potential includes the charging energy EC and the energy 

difference ΔE (if any) associated with the N +1 electron being in a higher energy shell 

than the N electron  [29],[26].  For submicron dots, the charging energies EC are in the 

range of  ½ to a few meV’s  [26], [30].  As shown in Figure 1.5(a), this charging energy 

EC creates a barrier to transport referred to as Coulomb blockade.  If the energy of 

electrons in the source μS is not greater than the energy required to add another electron to 

the dot μd or the energy of the last filled dot state μd is not greater than the energy 

required to add an electron to the drain μD then current in blocked and the charge state of 

the dot is fixed. 

In general Coulomb blockade can be lifted by two primary mechanisms both of 

which satisfy the general condition that the dot’s chemical potential μd falls in the bias 

window, μS >μd >μD.  First, the gate voltage can be tuned (Figure 1.5(b)) to draw μd 

between μS and μD.  When current flows, individual electrons sequentially tunnel on and 

off the dot, and in this manner, a current consisting of individual electrons flows through 

the dot.  A further mechanism for lifting Coulomb blockage is that the bias window, can 

be increased to meet the condition μS >μd >μD.  If μS - μD is large enough (Figure 1.5(c)), 

additional states on the dot are available.  This results in an increase in current.  If the 

bias window is increased still further, then both the N and the N + 1 state of the dot are 

energetically accessible (Figure 1.5(d))  [26], [29]. 
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Figure 1.5  (a)  The energetic cost of adding an N
th

 electron to the dot exceeds that 

available to the source electrons.  Therefore, due to Coulomb blockage, the number of 

electrons on the dot remains fixed at N-1 and no current flows.  (b) When μd(N) falls 

between μS and μD, single electron conduction through the dot occurs.  (c) The source-

drain window (i.e., μS - μD) can be increased so that transport through the dot can be via 

an excited dot state.  With two transport channels available to an electron, the current 

increases relative to (b).  (d)  The source-drain window can be increased further so that 

energetically both an N and an N+1 electron can be on the dot at the same time.  This 

corresponds to a still larger current than in (c).  (Figure adapted from reference [29].) 

 

A direct demonstration of the discrete nature of the conductance of a QD is 

achieved by sweeping the gate voltage and observing the peaks in conductance each time 

the transport condition F(N) – F(N-1) = Ef  is met (Figure 1.6).  The conductance peaks 

are equally spaced in Vg at intervals of ΔVg = e/Cg.  This separation can be calculated 

from the equivalence of μd(N,Vg) = μd(N+1,Vg+ ΔVg)  [26], [29].  Between these peaks, 

coulomb blockage exists and the number of excess electrons N on the dot is fixed.  The 

charging energy EC
 
is computing from ΔVg by the ratio η  = Cg /C ~ 0.1, EC = eη ΔVg = 

(e
2
/Cg)( Cg /C).  For the dot in Figure 1.6 with a typical value of η, EC ≈ 2.5meV 

corresponding to a dot diameter d ~ 150 nm.   
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Figure 1.6  Current peaks as a function of gate voltage for a QD.  Between the peaks due 

to Coulomb blockade, the preferred charge state of the dot corresponds to an integer N 

number of electrons.  At the peaks, μS >μd >μD leading to an increase in current as the dot 

can freely oscillate between the N and N+1 charge states.  The separation in the peaks 

ΔVg ≈ 25mV corresponds to a dot diameter d ≈ 150nm.  The upward slope of the plot is 

caused by the increasing current associated with the lower tunnel barriers as Vg  → 0. 

 

A further signature of transport in QDs is manifest when the differential 

conductance (dI/dVSD) is plotted as a function of both the gate Vg and the source-drain 

voltages VSD (Figure 1.7).  The classic signature of Coulomb blockade is a diamond 

shaped region where conductance is blocked.  The expanding black region in the left of 

Figure 1.7 strongly suggests that the central diamond corresponds to a single electron on 

the dot.  The diamond is tilted due to an asymmetry between the left and right tunnel 

barriers.  The qualitative shape of a coulomb blockade diamond can be understood by 

noting that: 1) the maximum necessary change in gate voltage between conductance 

peaks will occur when VSD ~ 0, 2) as VSD is increased from zero, there exists an increasing 

conductance region corresponding to μS >μd >μD (Figure 1.5(c)), and 3) when the source 

drain bias is greater than the charging energy, i.e. μS - μD > EC+ΔE, then a current flows 
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for any value of Vg (Figure 1.5(d)).  The color contour lines correspond to changes in 

conductance associated with a change in the number of available transport channels 

through the dot  [26], [29]. 

 

 

Figure 1.7  A plot of the differential conductance dI/dVds plotted as a function of the 

plunger gate (Vg) and source-drain (VSD) voltages.  The expanding left region of no 

conductance strongly suggests that the central diamond corresponds to a single electron 

on the dot.  The color contour lines represent changes in differential conductance that 

occur when transport channels through excited states in the dot become accessible. 

1.6 Double Quantum Dots 

A DQD system can be formed by coupling two single QDs.  The system is modeled in 

Figure 1.8 where an important new feature is the interaction between the dots represented 

by the mutual capacitance Cm and the tunneling resistance Rm.  
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Figure 1.8  A schematic model for two QDs coupled in series.  The interaction between 

the dots is parameterized by a coupling capacitance Cm and a tunneling resistance Rm. 

(Figure adapted from reference [31]) 

Transport through the dots can be analyzed classically in the linear regime where the bias 

voltage VSD ≈ 0.  Following the approach in van der Wiel
 
  [31], the chemical potentials 

for the left μ1 and right μ2 dots are  
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where EC1(2)  is the charging energy of dot 1(2) and ECm is the electrostatic coupling 

energy that accounts for the change in energy of one dot when an electron is added to the 

other.  The charging energies EC1(2)  resemble the charging energy of an unpaired dot with 

a correction factor dependent on the coupling Cm. 
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 From the chemical potentials μ1 and μ2, a charge stability diagram can be 

constructed that gives the occupation numbers (N1,N2) of the two dots as a function of the 

gate voltages Vg1(2).  With μS = μD ≡ 0, the occupation numbers (N1,N2) are the largest 

integer values for which  μ1 and μ2 < 0. Varying the gate voltages Vg1(2) produces the 

honeycomb pattern shown in Figure 1.9.  Transport occurs through the dots at electron ● 

and hole ○ triple points.  At these points an energy degeneracy exists between three 

charge configurations.  At electron triple points ●, the dots cycle through the sequence 

(N1, N2)→ (N1+1, N2)→ (N1, N2+1)→ (N1, N2) corresponding to a counter-clockwise 

rotation.  The hole sequence is (N1 +1, N2+1)→ (N1+1, N2)→ (N1, N2+1)→ (N1 +1, N2+1) 

corresponding to a clockwise rotation.  The separation in the triple point energies is given 

by ECm which, as mentioned, is the additional energy required to add an electron to dot 

1(2) when an extra electron is on dot 2(1).  This additional energy allows the transport 

cycle to proceed (N1, N2+1)→ (N1 +1, N2+1) as opposed to (N1, N2+1)→ (N1, N2).   
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Figure 1.9  A charge stability diagram for a double dot system showing the occupation 

numbers (N1,N2) as a function of the gate voltages Vg1 and Vg2.  First order transport 

through the system occurs around the electron ● and hole ○ triple points.  (Figure adapted 

from reference [31].) 

The other dimensions of the stability diagram can be computed from the chemical 

potential expressions 1.8 and 1.9.  The gate voltages required to add an electron to one of 

dots can be computed from the identities 
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Interestingly these values are equivalent to the single dot case.  The offsets in the 

honeycomb structure can be calculated from 
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These are the voltages that must be applied to the gates Vg1(2) to change the occupancy of 

the other dot 2 (1) by a single electron. 
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Figure 1.10  A charge stability diagram for a DQD-SSET as recorded by variations in dot 

current where the horizontal and vertical axes corresponding to variations in plunger gate 

voltages.  The horizontal striations correspond to random background charge changes that 

manifest themselves as offsets in gate voltages.  To compensate for these changes and to 

make the honeycomb structure apparent, the offsets were removed by aligning stability 

diagram features, such as the enhanced conductivity along a cell edge. 

1.7 Radio-Frequency Quantum Point Contact and Superconducting Single 

Electron Transistor 

When operated at radio-frequencies both QPCs and SETs can function as ultra 

sensitive extremely fast charge detectors  [32–35].  Such measurement times are an 

important component in numerous solid state implementations of quantum information 

processing systems.  Currently rf-SET charge sensitivities on the order of ≈10
-5

 e/√Hz are 

routinely achieved, and optimized performance is approaching the theoretical shot noise 

quantum limit of 1.6 x 10
-6 

e/√Hz  [36], [37].   
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The basic principle involved in using a QPC or a SET as an electrometer is that 

through capacitive coupling the QPC’s tunnel barrier or the chemical potential μd  of the 

SET island is sensitive to changes, such as charge fluctuations, in the electromagnetic 

environment.  In normal operation, environmental charge fluctuations are recorded as 

changes in current through the QPC or SET as the barrier or chemical potential shifts.  In 

optimized RF operation, the QPC or SET is embedded in an LCR tank circuit and the 

reflected power is measured.  In this set-up, the differential resistance Rd of the QPC or 

SET, which can be tuned to be a sensitive function of the gate voltage or offset charge Q0 

of the island, forms the resistance of the tank circuit.  Significant improvement in the 

operation of the SET can be achieved by making it superconducting.  This minimizes 

dissipative losses in the system thereby dramatically improving the signal modulation  

[35], [38], [39].
 

Figure 1.11 and the following analysis is in terms of an SET and its differential 

resistance.  The analysis applies equally to the differential resistance of a QPC operated 

in RF mode.  Figure 1.11 shows (a) a schematic of a SET embedded in a tank circuit and 

(b) the corresponding circuit diagram.  The impedance of the system looking into the tank 

circuit is given by [40] 
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Figure 1.11  (a) A diagram of A SET imbedded in a LCR tank circuit showing the input 

Vin and reflected Vout voltage waves.  (b) The circuit diagram corresponding to the system 

in (a). 

 

By definition at resonance, the imaginary terms in Z cancel, minimizing the impedance 

and maximizing the current.  Applying this condition yields 
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from which the resonant frequency can be calculated 
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Plugging this expression for ω0 back into equation 1.19, yields a remarkably simple result 

for the impedance of the tank circuit at resonance: 
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dCR

L
Z  . 1.22 

 

 The reflection coefficient Γ is defined in terms of the ratio of the incoming Vin and 

reflected Vout voltage waves and can be calculated as 
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where Z0 = 50 Ω is the characteristic impedance of the RF coaxial transmission line.  

Plugging Eq. 1.22 into Eq. 1.23, yields an expression for Γ with the dependence on the 

differential resistance Rd of the SET made explicit 
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where 
0

1
0

l
C Z

Q   is the unloaded quality factor.  When Rd = Z0/Q0
2
,  perfect matching 

exists and Γ = 0.  For Rd → ∞, Γ → -1 corresponding to the expected total reflection from 

a circuit with an infinite input impedance.   The unloaded quality factor is so defined as it 

determines two important parameters of the circuit: the RF signal applied to the SET VSET 

= 2QVin  and the resonance bandwidth B = f0/Q  [40]. 

Figure 1.12 in combination with Eg. 1.24 shows the essential features of the RF 

operation of a SET.  Figure 1.12(a) shows the I-V curves of a SET in (red) and outside 
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(blue) of coulomb blockade where the shift between these curves can be a function of a 

gate voltage Vg or changes in the charge state of a device capacitively coupled to the 

SET.   

 

  

Figure 1.12  (a) An illustrative drawing of the I-V curve for a SET in (red) and outside of 

Coulomb blockade. (b) An illustrative drawing of the reflected power of an SET 

embedded in an LCR tank circuit when the SET is in (red) and outside (blue) of Coulomb 

blockade.  (Figure from M. Thalakulam Thesis [41].) 

 

The inverse of the slopes of the I-V curves is the differential resistance Rd.  As shown by 

Eq. 1.24 and Figure 1.12 when the SET is in coulomb blockade (red line) and biased near 

VSD ≈ 0, the differential resistance Rd is infinite, and, as expected, Γ = -1 corresponding to 

total reflected power.  When the SET is outside of Coulomb blockade (blue line) and 
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perfect impedance matching exists (given a particular combination of Rd, L, and C), then 

Γ = 0 and all the power is absorbed by the system.  Changes in the values of the 

reflection coefficient  Γ corresponding to charge fluctuations modulate the amplitude of 

the reflected signal thereby encoding charge detection information.  

For real systems with unavoidable additional dissipative elements and in which 

perfect impedance matching is difficult to achieve, |Γ| normally fluctuates between values 

less than 1 and greater than 0.  However related work in our lab shows that when 

significant efforts are made to remove as much dissipation as possible with the 

introduction of superconducting elements, the real behavior in terms of the modulation of 

Γ can closely approximates the ideal case  [42]. 

1.8 High Frequency Noise Properties of a Quantum Point Contact 

 Arising from the quantization of the electronic charge and the stochastic nature of 

electrons tunneling though a QPC tunnel barrier, shot noise is an intrinsic unavoidable 

source of fluctuations in any current measurement.  The low frequency or dc value is 

given by  [43]  

  
2

2 d 1
2

II

e
S E T f T f


   1.25 

where T is the transmission probability and  f  the Fermi distribution function specifying 

the probability that an electronic conduction state is filled.  When either T or f  is small, 

this reduces to the familiar Schottky result 

 2 .IIS e I  1.26 
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 When the QPC is driven by an ac bias at a frequency
 


0
, the expression for the 

resulting photon-assisted shot noise (PASN) 0( , )IS    at a frequency   is given by  
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where QPC
0rf

2 /eV  , QPC
rf

V  is the rms amplitude of the ac bias voltage across the 

QPC, and ( )lJ x  is a Bessel function of the first kind.  This expression can be derived 

from a more general expression for the shot noise given by Pedersen and Büttiker  [44] 

under the assumption that the transmission coefficients nT  are independent of energy and 

assuming zero dc bias across the QPC.  This form is equivalent to that for the zero 

frequency photon-assisted shot noise at non-zero dc bias 
dcV  given elsewhere  [45]  with 

the substitution of   for dc.eV
 
As shown in Figure 1.13, the expression 1.27  for the 

PASN shot has a step-wise linear frequency dependence.   

 

Figure 1.13  Theoretical frequency dependence of photon assisted shot noise (PASN), 

calculated from the expression 1.27, showing a weak and monotonic relationship, in 

sharp contrast to the frequency features described in Sections 2.5 and 6.1. 

This frequency dependence is relatively weak, corresponding to a variation of only 0.1% 

over our measurement bandwidth.  As discussed below in Section 2.5 and in the appendix 
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Section 6.1, the expression 1.27  for PASN corresponds numerically to our overall noise 

measurements.  However it does not explain the sharp frequency dependence that we 

observe.  
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2 Macroscopic Mechanical Resonance 

Driven by Shot Noise Backaction of 

Mesoscopic Quantum Point Contact  

2.1 Introduction 

This chapter describes the work, with additional details and background 

information, published in reference [1].  The chapter first discusses our coupled electro-

mechanical system in which the backaction of electrons tunnelling through a QPC drive 

resonant modes of the host crystal through a naturally occurring feedback loop.  The 

second section describes the system’s piezoelectric coupling between the mechanical and 

electrical degrees of freedom.  The resulting Hamiltonian and the system’s master 

equation are presented in the third section.  As the reflected power spectrum shows 

unexpected and marked frequency dependence, the power and partition dependence of 

the data is then presented in the fourth section to demonstrate the signal’s origin as shot 

noise. The fifth section describes the feedback loop that couples the electrical and 

mechanical degrees of freedom of the system, including a presentation of the experiment 

used to verify the existence of the feedback loop.  The sixth section covers details on the 

structure of the resonant modes including both the mechanical displacement and the 

induced electric polarization field.  The details of the mathematical methods used for 

calculating the resonant modes are covered in the Appendix section Resonant Mode 

Calculation 6.2.  In the seventh section, an analysis of the displacement sensitivity of our 

system is presented.  As the feedback loop creates correlations in the tunnelling of 

electrons, the final eighth section deals with our frequency dependent Fano factor data. 
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The rf-QPC work described in this chapter was the result of a collaborative effort 

with essential contributions coming from several members of the lab including Madhu 

Thalakulum, Feng Pan, Mustafa Bal, Zhongqin Ji, Weiwei Xue as well as Alex Rimberg 

and myself [1].  The project was initiated by Alex Rimberg.  Madhu Thalakulum 

fabricated the first device, sample A, and took and analysed the first sets of data.  These 

measurements were extremely clean and were used to show the shot noise quantitative 

power dependence and qualitative partition dependence.  Mahdu Thalakulum also 

performed temperature and magnetic field measurements on sample A.  I fabricated five 

samples, including samples B and C.  Fen Pan, Mustafa Bal, Zhongqing Ji and Weiwei 

Xue fabricated and measured two additional samples.  Alex Rimberg and Miles 

Blencowe, with later help from Latchezar Benatov, developed the theoretical model used 

to describe the system.  Alex Rimberg and I analysed data from all of the sample and co-

wrote the published record of the work with input from Miles Blencowe [1].  This effort 

focused on identifying the source of the shot noise frequency dependence and the 

development of the piezoelectric feedback loop description and its consequences.  This 

work included analysis of the resonant modes and the transduction coupling factors as 

well as the macroscopic displacement of the crystal and the associated electron-electron 

correlations.   

2.2 Shot Noise Backaction Feedback Loop Driving Resonant Oscillations 

We begin by describing how a QPC naturally couples to a certain three-

dimensional vibrational mode of the host crystal and hence can be used to measure 

displacement.  Assume as in Figure 2.1 that each end face of a GaAs crystal containing a 
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two-dimensional electron gas (2DEG) is displaced laterally a distance dy.  Such a flexure 

will cause the center of the crystal to be pinched vertically a distance dz on one side and 

expanded the same amount on the other.  The resulting strain 2 /yzS dz w , where w is the 

width of the crystal, gives rise through the piezoelectric coupling constant 4xe of GaAs to 

a bulk polarization 4x x yzP e S  that we assume lies along the direction of transport 

through the QPC.   

 

Figure 2.1  A drawing illustrative of the piezoelectric nature of GaAs in which electric 

polarization fields are associated with deformations of the crystal.  A lateral displacement 

dy (blue arrows) with an associated dz contraction and expansion in a GaAs crystal 

generates a shear strain 2 /yzS dz w  at the upper surface that causes a corresponding zP  

and 4x x yzP e S  polarization.  Yellow rectangles are QPC surface gates for which an 

applied negative voltage depletes conduction electrons in the corresponding 2DEG 

underneath.  Blue squares are ohmic contacts that provide an electrical path between the 

crystal’s surface and the 2DEG. 

Electrons in the 2DEG will screen the polarization charge.  Under the gates and in 

the QPC where the 2DEG is depleted, however, a net electric field and corresponding 

electrochemical potential difference d  will exist, resulting in a current I between the 

electron reservoirs, which are labelled L (left) and R (right), as shown in Figure 2.3.  A 



30 

simple screening argument, discussed in more detail in Section 2.6, shows that d dz   

where   has units of force.  For typical parameters, 2.4fN  .  The screening of the 

polarization charge leads to a dipolar accumulation of free charge dn in the 2DEG at the 

location of the ohmic contacts as in Figure 2.1.   

Next we describe the naturally occurring backaction induced feedback loop.  In 

particular as the drive d for the current I depends on dz, the current I flowing through the 

QPC provides information regarding the displacement of the crystal. Unavoidable shot 

noise arising from the partitioning of electron-hole pairs at the QPC gives rise to a 

backaction force noise on the oscillator, as shown in Figure 2.2. The associated dipolar 

charge fluctuations dn in the reservoirs L and R cause a fluctuating three-dimensional 

polarization of the GaAs crystal (Section 2.7 and Figure 2.13(a) and Figure 2.14(a)).  

This leads, in turn, to a fluctuating backaction force dF dn  on the oscillator through 

piezoelectric coupling (see Section 2.3), where for typical parameters 143.7 10  N/C   .    
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Figure 2.2  A diagram illustrating the naturally occurring feedback loop generated by the 

backaction of the measurement process.  Starting with a displacement dz of the crystal, 

piezoelectric transduction causes an energy difference dε between the reservoirs L and R.  

The resulting flow of current I through the QPC can be used to obtain information 

regarding dz.  In this manner the current I and its spectral fluctuations SI constitute 

measurements of the mechanical system (i.e., displacements of the crystal).  Quantum 

statistical fluctuations in electron tunneling invariably results in shot noise. This causes 

fluctuations in the accumulated dipolar charge dn. These charge fluctuations through 

piezoelectric transduction in turn lead to a fluctuating force dF.  Through a straight-

forward mechanical coupling, the noisy force dF imparts a noisy momentum kick to the 

lattice. The crystal responds preferentially at its resonant frequency with displacement 

values dz having fluctuations peaked at this frequency.  These noisy frequency dependent 

displacements close the feedback loop and introduce a frequency component into the 

subsequent electrical and mechanical behavior of the system.  The energy needed to 

maintain the current I is provided by a bias voltage CE .V  

Like a tuning fork struck by an impulsive force, the crystal responds to the backaction 

force dF with mechanical fluctuations dz that are strongly peaked at its resonant 

frequency m .  Piezoelectric coupling now leads to fluctuations in the chemical potential 

d dz   that are also peaked at the mechanical resonance.   

In this way, a backaction induced feedback loop  [8], [46] coupling the electrical 

and mechanical degrees of freedom naturally arises as the chemical potential d  
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fluctuations (and the corresponding charge fluctuations dn) are now weighed at the .m  

This transforms the initially white impulsive force dF dn  into one that drives the 

mechanical system preferentially at its own resonant frequency.   

2.3 Electrical-Mechanical Piezoelectric Coupling 

First we calculate the electrical response of electrons in the 2DEG to mechanical 

displacements of the host crystal.  As illustrated in Figure 2.1 assume a GaAs crystal is 

subject to a y-z shear strain / ( / 2)yzS dz w  at the depth of the 2DEG where dz is the z-

displacement at the edge of a crystal of width w.  Piezoelectric coupling will give rise to a 

bulk polarization 4x x yzP d S where 60 GPa  and 
12

4 2.6 10  C/Nxd   are the shear 

modulus and the piezoelectric stress constant of GaAs, respectively.   Within the 2DEG 

channel at the edges of the crystal a total bound polarization charge per unit length given 

by 4(2 / )x xP t d t w dz  will therefore appear; here t is the thickness of the 2DEG.   The 

mobile 2DEG electrons will attempt to screen the piezoelectrically induced polarization 

charge over a Thomas-Fermi screening length 1 2

TF 0 2D/rk t e g   where r  is the 

relative dielectric constant of GaAs, 0  is the permittivity of free space, 2Dg is the two-

dimensional density of states, TFk  is the Thomas-Fermi wave vector, and e is the 

electronic charge.   This will result in a dipolar sheet density fluctuation dn  in the 2DEG 

on the order of TF4(2 / )xd tk e dzd wn  that will appear at each edge of the crystal and 

also on either side of the QPC.  (Here we make use of the fact that the dielectric response 

time of the 2DEG is much shorter than the response time of the QPC itself.)  The 
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corresponding shift in the electron energies in the reservoirs L and R is given by 

2D 4 0 TF2 / (4 / )x rd dn g e d wk dz dz        where 

 4

0 TF

4 x

r

e d

wk




 
  2.1 

describes the response of the chemical potential in the 2DEG to displacements of the 

GaAs crystal containing it.  Using 13r  , 1

TF 5nmk  and a typical crystal width 

2 mmw we estimate 2.4fN  . 

We now need to consider the mechanical response of the crystal to a dipolar 

charge fluctuation dn at the location of the ohmic contacts.  Such a charge fluctuation will 

lead to a free charge sheet density fluctuation 2/ cFd dn w  where wc is a typical lateral 

dimension of the contacts.  The presence of free charge at the surface of the crystal will 

induce a bulk polarization beneath it given by ( 1) /
z r F r

dP d    , where we have 

treated the contact as the top plate of a parallel plate capacitor.  Piezoelectric coupling in 

GaAs will now lead to an induced strain fluctuation 

2

4 4

1 1r F r

r x r x c

d dn
dS

d d w

  

   

 
   

To find the mechanical force dF produced by a charge fluctuation dn, we first 

consider the elastic response of the crystal.  Clearly dF k dy where 2

mk m is the 

stiffness of the GaAs crystal when oscillating in the Ey-1 mode; for sample A, we find

82.12 10  N/mak    using the known resonant frequency and mass of the sample.  Since 

/dS dy l , we may write 
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which leads directly to dF dn  where  

2

2

4

1 mr

r x c
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d w




 


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For sample A, using 3 mml   and 100 mcw  , we find 143.7 10  N/C   .  

Even small charge fluctuations can therefore give rise to large forces on the sample.  For 

instance, for a number fluctuation dn of only 10,000 electrons, we find 0.6 NdF  , a 

testament to the great strength of electrical forces, particularly when applied on the 

microscopic scales responsible for such phenomena as piezoelectricity.  

2.4 System Hamiltonian and Master Equation 

As described above in Section 2.2, our GaAs-based QPC is a naturally occurring 

electromechanical system consisting of a macroscopic mechanical oscillator whose 

position is continuously monitored by a mesoscopic electrical detector.  The current 

section reviews the initial theoretical treatment devised by M.P. Blencowe including the 

system Hamiltonian and the resulting master equation.  Although not reviewed in this 

thesis, this treatment has been further developed in conjunction with L.L. Benatov  [47].  

Part of this further work demonstrates that the bias dependent electro-mechanical 

coupling can be recast such that the tunnelling amplitude varies with the crystal’s 

momentum and not its position. 
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Referring to Figure 2.3 , the quantum point contact (QPC) can be modelled as a 

tunnel barrier separating left (L) and right (R) reservoirs. The single electron energy 

levels of the L and R reservoirs are shifted in opposite directions proportionally to the z 

displacement. This shift corresponds to the piezoelectric effect associated with the flexing 

GaAs wafer being modelled as a potential difference between the two L and R 2DEG 

reservoirs. 

 

Figure 2.3  Model for chemical potential of QPC including non-negligible contact 

resistance of several kΩ.  The model assumes that the metallic wires E and C connected 

to the crystal are held at a fixed potential difference while the potentials of L and R are 

free to change as electrons tunnel through the QPC.   The electron distribution functions 

En  and 
Cn  for E and C are Fermi distributions, whereas the corresponding 

distributions 
Ln  and 

Rn  for L and R are not.  The QPC is treated as a tunnel barrier 

with coupling LR  and the ohmic contacts as tunnel barriers with coupling EL  and 

RC .   

The emitter (E) and collector (C) reservoirs are held at fixed chemical potential 

difference E C CEeV    and couple to the L and R reservoirs, respectively, via some 

contact resistance modelled as tunnel barriers.  The recognition of the presence of this 

contact resistance and its implications for the noise properties of the QPC is an important 

way in which our approach differs from the usual treatment, which treats the reservoirs L 
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and R as being held at fixed potentials.  In particular the contact resistance allows the 

chemical potentials
L  and 

R to vary with the fluctuating charge distribution dn as 

electrons tunnel.
 

The Hamiltonian is given by sys bath intH H H H    where the system 

Hamiltonian is given by 

† † †

sys
ˆ ˆ( / 2) ( / 2)m L L L R R R

L R

H a a z b b z b b          , 

the bath Hamiltonian is 

† †

bath E E E C C C

E C

H b b b b    , 

and the interaction Hamiltonian is 

† † † † † †

int

, , ,

( ) ( ) ( )EL E L L E CR C R R C LR L R R L

E L C R L R

H b b b b b b b b b b b b           . 

Here m is the effective mass of the GaAs crystal containing the QPC and m  is the 

crystal’s resonant frequency of interest.  The operators ib  (
†

ib ) denote in shorthand the 

fermionic lowering (raising) operators for energy levels i  of a given reservoir 

, , ,i E L R C , while the operators a (
†a ) represent the lowering (raising) operators for 

the mechanical resonator.   The parameter   characterizes the piezoelectric coupling 

between the vibrational mode and reservoir electrons, while the ij characterize the 

contact resistance barriers between the various adjacent reservoirs.  Unlike most 

treatments of electromechanical coupling to QPCs, this coupling does not modify the 
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QPC tunnel barrier, but instead acts as an additional voltage bias across the barrier. This 

is in accord with the observation that the coupling modifies the shot noise rather than 

acting as amplitude modulation, which would be expected from a modulation of the 

barrier height.  

To gain a clearer idea about how the mechanical resonator and electron gas 

subsystems interact, we write down the master equation resulting from tracing over the 

bath degrees of freedom comprising the E and C reservoir electrons. The system 

probability density     , , , , ,L Rn n N z v t  is specified by the L and R reservoir level 

occupation numbers , 0,1L Rn n  , and the oscillator position z and velocity v.  The 

probability function also depends on the total number of electrons N that have traversed 

the RC barrier starting from some initial reference time.  In terms of the system 

probability density, the Born-Markov approximated master equation is  
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The first line in the master equation describes the resonator dynamics: the 

electron-induced piezoelectric force acting on the resonator depends on the relative 

charge imbalance between the L and R reservoirs on either side of the QPC. On the other 
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hand, the resonator-induced piezoelectric force acting on the electrons manifests itself 

through the z-dependent shifts of the L and R reservoir energy levels appearing in the 

energy conserving delta functions for the tunnelling electrons. The E, C baths are 

characterized by Fermi-Dirac distributions   

( )

( ) ( )

1

exp[( ) / ] 1
E C

E C E C B

n
k T 


 

 

where we assume the two baths are at the same temperature T but have different chemical 

potentials as a result of the applied voltage bias across the QPC: E C CEeV   . The 

counting variable N that tracks the total number of electrons that have traversed the RC 

barrier allows one to express the current noise in terms of the moments 

,  ,  ,  ,  and  R R Rz N n Nn Nz zn . 

2.5  Frequency Dependent Shot Noise 

This section discusses the remarkable frequency dependence noise signal that we 

observe and establishes its origin as shot noise.  The presence of strongly frequency 

dependent shot noise was unanticipated in the literature with over 20 years of theoretical 

treatment assuming the presence of white shot noise.  As part of our demonstration, we 

first present the dc characterization of a representative sample to show that we are dealing 

with a standard high quality device.  Next, the initial rf characterization of the device is 

used to show the spontaneous strong frequency dependence we observe.  The noise 

signal’s power dependence is then analysed and shown to vary as 
1 2

inP , the first signature 

of shot noise.  Finally, the partition dependence of the signal is explored and shown to 
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vary appropriately with QPC conductance, the second signature of shot noise.  Having 

established that the noise we observe is shot noise, subsequent sections describe the 

origin of the frequency dependence and its connection to mechanical modes of the 

crystal.  

Figure 2.4 shows the essentials of our rf-QPC measurement step-up.  A full 

discussion of the measurement set-up and device characteristics are provided in Sections  

4.1  and 4.2. The QPCs studied were formed by depleting a GaAs/AlGaAs two-

dimensional electron gas with a voltage Vg applied to metallic surface gates.  We used 

standard lock-in techniques to measure the differential conductance GQPC by applying a 

small excitation signal (Vac = 20 μV at 13 Hz) to the dc port of the bias-tee while 

simultaneously recording the differential current.  GQPC was extracted from the raw data 

by accounting for series resistance in the measurement wiring and sample, and for the 

shunt capacitance of the coaxial feedline, such that GQPC ≈ G0 on the first plateau and 

GQPC ≈ 0 at pinch-off.  Application of a dc voltage Vdc allowed for measurement of 

nonlinear differential conductance GQPC versus both Vg and Vdc.  For charge sensitivity 

measurements, an ac voltage Vm applied to the QPC gates in addition allowed for 

modulation of GQPC. 
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Figure 2.4  Schematic of rf-reflectometry measurement circuit with SEM image of a 

representative device. RF Vrf, dc Vdc, and near-dc Vac voltages are applied to the current 

path of the sample via a bias-T.  The chemical potentials of the leads 
E and 

C  are 

considered fixed whereas the chemical potentials of the 2DEG L and R are separated 

by contact resistances and hence free to fluctuate with the electron density dn. The 

sample is embedded in a tank circuit consisting of a spiral chip inductor L, the sample Rd, 

and the inherent parasitic capacitance Cp. The conductance of the QPC GQPC can be 

externally adjusted with ac Vm and dc Vg voltages.  As the impedance of the tank circuit Z 

depends on GQPC, changes in the conductance modulate the reflected signal Vrf allowing 

fast signal detection (see Sections 1.7 and 4.1 for additional details).  

As described above in Section 1.7, the large bandwidth of the system is achieved 

via RF-reflectomery  [32]  that allows for microwave measurements simultaneously with 

the dc and near dc characterization.  Embedding the QPC in an LC tank circuit impedance 

matches the high resistance of the QPC, RQPC ~10 kΩ, to a standard 50 Ω transmission 

line.  To perform the fast measurements, a high frequency signal Vrf  is applied to the tank 

circuit via a bias-tee and the reflected signal Vr = Γ Vrf  is measured.  As the reflection 

coefficient Γ depends on the differential conductance GQPC of the QPC, changes in GQPC 

modulate Vr  and allow for time resolved measurements down to ~ 1 μs.  The bandwidth 

of the system is determined by the width of the tank circuit resonance, 

0 / 60MHz.f f Q    

Figure 2.5 shows the dc characterization of our most sensitive rf-QPC sample 

(Sample A).  The linear differential conductance data GQPC (Vg) shows well-defined 
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plateaus at integer multiples of the conductance quantum G0 = 2e
2
/h, the classic signature 

of ballistic 1D transport with its quantized transverse conduction channels.   

 

Figure 2.5  (a) Measurements of sample A of GQPC versus gate voltage Vg at zero 

magnetic field showing standard 1D sub-bands.  Inset: GQPC after exposure of the sample 

to light, showing multiple conductance plateaus.  (b) Nonlinear differential conductance 

GQPC  (Vdc, Vg).  The vertical dashed lines indicate the estimated rms rf voltage Vrf applied 

to the QPC for noise measurements shown in Figure 2.6. (Data from M. Thalakulum 

Thesis [41].) 

The non-linear measurements in Figure 2.5(b) record the differential conductance GQPC 

(Vg, Vdc) as a function of both the gate Vg and bias voltage Vdc.  For T < 500 mK, there is 

a peak in GQPC around Vdc = 0 for QPC conductance in the range 0 < GQPC < G0.  This 

zero-bias anomaly has been studied previously  [5]  and interpreted as the onset of Kondo 

physics in a QPC,  [5], [48]  as has an additional plateau at finite bias (Vdc ≈ 700 μV) for 

which GQPC ≈ 0.8 G0  [5].  

 Figure 2.6 shows the spontaneously generated structure representative of our rf 

data measurements.  The data shown is from Sample A.  The QPC conductance was set in 
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the tunneling regime around GQPC  ≈ 0.5 G0, an RF excitation Vrf was applied, and the 

reflected power spectrum Pn was measured. 

   

Figure 2.6  Output power spectrum Pn of the rf-QPC for input power 78inP    dBm and 

GQPC ≈ 0.5G0 for Sample A.  The output signal includes a central peak at the drive 

frequency 0 800MHzf  and strong frequency dependent features at ~ ± 580 kHz.  The 

frequency dependent features are spontaneously generated as no external modulation 

other than 0f is applied to the sample’s bias or gate lines.  Also noteworthy, as described 

below, these features clearly exceed the noise floor of the cryogenic HEMT amplifier 

.A

nP  (Data from M. Thalakulum Thesis [41].)  

Remarkably, the signal is strongly frequency dependent with pronounced spontaneously 

generated peaks at f =  f0 ± 580 kHz, where f0 = 800 MHz is the tank circuit’s resonance.  

As are discussed below, the spontaneously arising features in Pn are in fact the shot noise 

of the QPC.  Furthermore, they are electromechanical in origin and arise from the 

coupling of a particular normal vibrational mode in the GaAs crystals to electrons in the 

2DEG.  

Since Pn depends on Pin and GQPC (see below), it is clearly associated with the 

QPC.  A review of the corresponding time domain signal reveals that the frequency 
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features are stochastic, i.e. noise.  There are two broad categories into which such noise 

might fall: modulation noise, for which current through the QPC is amplitude modulated, 

and shot noise  [49].  Modulation noise scales with input power at least as n inP P  

whatever its origin, whether the motion of trapped charges in the substrate, 

electromagnetic noise coupled to the QPC gates, mixing due to the QPC nonlinearity, or 

some other source  [49].  Shot noise, in contrast, scales as 
1/2

inP
  
[43], [50]. 

To help evaluate the power dependence of Pn, we created a known modulation 

signal Ps for comparison, as shown in Figure 2.7(a).  When a small ac voltage Vm at 97 

kHz was applied to the QPC gates, the rf-QPC output showed clear side peaks of size Ps 

at f0 ± 97 kHz, indicative of the amplitude modulation riding on a broad noise 

background.  As we varied Pin, we found that Ps   Pin over three decades before the 

excessive modulation drive caused the response to saturate, as shown in Figure 2.7(b).   

  

Figure 2.7  (a) The reference modulation signal Ps is generated by applying an ac 

excitation to the QPC gates of Sample A.  (b) The dashed lines are guides to the eye 

showing that the modulation signal Ps (red squares, left axis) scales as ~ Pin while the 

integrated excess noise 
E

n  (blue circles, right axis) scales as 
1/2

inP , the first signature of 

shot noise. (Data from M. Thalakulum Thesis [41].)  
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To properly evaluate Pn for the noise features in Figure 2.6, we examined the 

integrated excess noise 
E

n in a 4.8 MHz bandwidth above f0.  In contrast to Ps,
E

n

scales as
1/2

inP over nearly five decades (see Figure 2.7(b)) strongly suggesting that the 

spontaneous spectral features in Pn are shot noise.  For this to be the case, however, the 

spectral features must not only scale as
1/2 ,inP  but must also show partition dependence. 

Partition dependence arises from the stochastic partitioning of a discrete charge 

stream into transmitted and reflected beams by the QPC tunnel barrier.  The resulting 

shot noise is maximal when the conduction channel is partially transmitting and minimal 

when completely closed or open  [43].  This is exactly what we observed. The spectral 

noise features vanished [red (green) trace in Figure 2.8(a)], and the corresponding
E

n is 

minimal [red (green) line in Figure 2.8(b)] when the differential conductance GQPC was 0 

and G0, respectively.  Similarly the noise features were present [black trace in Figure 

2.8(b)], and 
E

n is maximal [black line in Figure 2.8(b)] when GQPC ≈ 0.5G0.  The 

suppression of the measured shot noise relative to the single-particle theory for GQPC  

0.5 has been observed by others and attributed to the many body physics of the 0.7 

structure  [51].  
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Figure 2.8  (a) The reflected power spectra Pn for Pin = -88 dBm and GQPC ≈ 0 

(red), GQPC ≈ 0.5G0 (black), and GQPC ≈ G0 (green) showing that Pn is minimal for 

fully open or closed channels, and maximal for half-open channels, the second 

signature of shot noise.  Data from Sample A.  (b) Quantitative comparison of 

measured shot noise with theory.  The measured integrated excess noise 
E

n (blue 

circles) and the calculated integrated noise power p 0 0(2 ) ( , )IL C Z S df  (blue 

dashes) as a function of QPC differential conductance GQPC. (Data from M. 

Thalakulum Thesis [41], calculations subsequent.) 

In addition to this striking qualitative correspondence, our data show close 

quantitative agreement with a theoretical calculation of the magnitude of the shot noise as 

a function of QPC conductance.  In our experiment, shot noise arises from the partition 

noise of electron hole pairs created by the rf voltage 
QPC

rfV across the QPC, so called 

photon assisted shot noise (PASN)  [43], [45], [50], [52].  Assuming energy independent 
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transmission coefficients Tn, it can be shown (See appendix, Section 6.1 ) that the spectral 

density of photon-assisted shot noise is given by 

  
2 2 0

0 0
4

2
( , ) (1 ) ( ) ( )cothI n n l

B
n l

le
h k T

S T T l J
 

    




   
    

where QPC
0rf2 /eV  .  The expression for SI (ω, ω0) is only very weakly frequency 

dependent and cannot account for the spectral features we observe. For low temperatures 

and 1 , the infinite sum can easily be evaluated and scales as 
1/2

inP  .  Our data 

confirm that the measured 
E

n , Figure 2.8(b) - blue circles, is well described by a 

theoretical calculation of the shot noise SI (ω, ω0) integrated over the same bandwidth and 

converted to voltage noise
25

 by the tank circuit,  Figure 2.8(b) -blue dashed line.  For the 

partition power dependence data shown in Figure 2.8(b), we shifted the calculated noise 

power downward by 3.9 dB but used no other fitting parameter.   

 The partition dependence and
1/2

inP scaling of 
E

n  together conclusively 

demonstrate that the spectral features we observe, despite their unusual nature, are in fact 

shot noise.  Additional details on our calculation of the integrated excess noise 
E

n  are 

discussed in the appendix, Section 6.1 

2.6 Feedback Loop Coupling Electrical and Mechanical Degrees of 

Freedom 

Having established that the source of the frequency features is shot noise, this 

section develops further the details of how the initial white shot noise spectrum is 

transformed through the feedback loop between current flow and crystal vibrations.  In 
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particular our analysis demonstrates that the spectral features arise from the coupling of 

electronic transport to a particular normal vibrational mode of the GaAs crystal that 

possesses a piezoelectric polarization field as illustrated in Figure 2.1.  In all we collected 

data from eight samples and found that the spectral features depended only on sample 

geometry and not on other parameters such as magnetic field, temperature, drive 

frequency, or matching network  [41]. 

Figure 2.9 shows data from two representative samples (A and B) with different 

geometries and gate configurations.  We numerically solve  [53],[54]  for the three 

dimensional normal vibrational modes as determined by sample dimensions and the 

material parameters of GaAs.  We find close correspondence between our data and the 

predicted frequencies for the Ey-1
 
flexural mode  [53].  As discussed below, this mode is 

excited is due to a combination of sample-specific ohmic contact and QPC gate 

geometry.  This mode combines large flexural motion in y with small shear displacements 

dz in the vicinity of the QPC such that ,dy dz  where 1   is a geometry-dependent 

dimensionless parameter.   

The rf data for sample A is reproduced in Figure 2.9(a) with an additional value of 

Pin (-98 dBm) and a top-down view of the sample’s geometry.  The dimensions of sample 

A yield a resonant frequency fa = 510 kHz that falls almost exactly on the shot noise 

peak.  To further demonstrate coupling of the shot noise to the Ey-1
 
mode, we engineered 

sample B to move the shot noise peak to a frequency of  ~ 1 MHz, providing a large 

bandwidth for charge detection with reduced shot noise.  Based on the dimensions of 

sample B, we predict fb = 1.07 MHz, remarkably close to the measured feature peak, as 
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shown in Figure 2.9(b).   Note that as the power is increased (from red to black) the 

broadband shot noise decreases while the total increases becoming concentrated at the 

sample’s resonant frequency, supporting the observation that the initially white electronic 

noise spectrum is transformed by its coupling to a resonant mode.   

 

Figure 2.9 (a) The reflected power spectrum Pn from sample A reproduced with 

the inclusion of data from an additional input power excitation (Pin = -98 dBm).  

On left: a diagram of the sample geometry including the ohmic contacts (blue 

crossed-boxes), QPC (yellow rectangles), and linear dimensions.  The calculated 

value for the excited 3D acoustic mode (fa = 510 kHz) falls almost exactly on the 

shot noise peak.  (b) The shot noise spectrum for sample B whose dimensions 

were chosen to generate a coupled resonant mode of ~ 1MHz.  On left: the sample 

dimensions shown correspond to a predicted resonant frequency (fb = 1.07 MHz) 

remarkably close to the shot noise peak.  The sharp starred features are 

modulation noise rather than shot noise and scale as inP , not 
1/2.inP   

The frequency calculations discussed above include a fitting parameter of 10 

percent (fmeas= 0.9* f0) that likely accounts for factors such as material parameter 

differences between our GaAs/AlGaAs 2DEG material and generic GaAs.  In addition at 
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the shallow 100 nm depth of the 2DEG, the acoustic excitation may include a surface 

wave perturbation to the bulk mode.  Individual frequency deviations for particular 

samples may be attributable to factors such as actual non-ideal rectangular geometries 

and crystal defects.  

A detailed examination of the three dimensional polarization field P associated 

with the Ey-1 mode indicates that it is in fact capable of coupling to electrons in the 

2DEG.   As shown in Figure 2.1, the polarization P at the location of the 2DEG contains 

a nearly constant x-component that couples the mechanical motion to transport through 

the QPC.  In addition, the polarization at the location of the ohmic contacts has a strong 

dipolar component in the z direction that couples to dipolar charge fluctuations in the 

reservoirs L and R, allowing for efficient electrical actuation of the mechanical mode.
28

 

The presence of the Ey-1 mode means that a measurement of QPC current is necessarily 

also a measurement of lattice displacement dz.   The resulting backaction then requires 

the existence of a feedback loop, as discussed with respect to Figure 2.2. 

Intuition into the transformational properties of the feedback loop can be gained 

by considering by analogy a white noise source, such as electrical current noise 

generating static from a speaker, and a resonant system, such as a glass.  The feedback 

loop consists of two halves:  a speaker that transfers energy from the current to the glass 

and a microphone that transfers energy from the glass to the current.  Although all 

frequencies are initially present in the electrical noise, the glass responds to the static at 

its resonant frequency, and this, coupled with the feedback loop, leads to a spectrum 
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heavily weighted at the resonant frequency as the ringing of the glass causes an increased 

acoustic drive at this frequency.   

In our system the initial white noise is broadband shot noise.  Analogous to above, 

one half of the feedback loops consists of energy being transferred from the current to 

acoustic vibrations of the crystal.  This occurs by macroscopic charge fluctuations in the 

ohmic contacts inducing a polarization field that piezoelectrically excites an acoustic 

mode.  In the other half of the feedback loop, also analogous to above, energy from the 

acoustic vibration is returned to the current.  In particular the acoustic vibration generates 

an in plane polarization field P that combines with an electric displacement field D to 

create an ac bias across the QPC.  The ac bias causes correlations in the tunnelling of 

electrons at the resonant frequency.  This increases the weight of the PASN at this 

frequency and completes the feedback loop. 

 Figure 2.10 shows in more detail the interaction of the polarization field P, the 

electric displacement field D, and the free charge.  The figure also presents a device 

geometry with two perpendicular QPCs that is used to test the feedback hypothesis.  As 

shown, the component of the polarization field P in the plane of the 2DEG for the 

flexural mode we observe is nearly constant and points along the transport direction 

connecting the ohmic contacts.  In the high conductance regions, free charge in the 2DEG 

generates an electric displacement field D that screens the polarization field P resulting in 

no net electric field 
0
( ) 0.1


  E D P  Under the gates and in the QPC, however, the 

polarization P and electric displacement D fields combine to create an electric field E, 

and hence a bias voltage, across QPC 1 but not across QPC 2. 
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Figure 2.10  Details of a sample with two perpendicular QPCs (QPC 1 and QPC2) used 

to test the piezoelectric feedback hypothesis.  In the high conductance regions, the 2DEG 

free charge naturally arranges itself to screen the bound charge.  Under the gates and in 

the QPC gap, however, the polarization field P and the displacement field D combine to 

create a net electric field E across QPC 1 but not QPC 2. 

Figure 2.11 presents the data used to verify the existence of the feedback loop 

with sample C, a device having the gate geometry discussed in Figure 2.10.  Energizing 

QPC 1 generates shot noise with the proper partition dependence, i.e., no noise when the 

channel is open or closed and maximum noise when partially transmitting.  By contrast, 

energizing QPC 2 breaks the feedback loop at the asterisk in Figure 2.2, since lattice 

displacement in this case does not result in a bias across QPC2.  The resulting noise 

spectrum (inset) shows no frequency dependent noise features even for a partially 

transmitting barrier.  The peak for QPC 1 again falls close to the frequency fc = 839 kHz 

predicted by the sample dimensions.   
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Figure 2.11 The reflected power spectra Pn for QPC 1 and QPC 2 in sample C when 

GQPC ≈ 0 (red), GQPC ≈ 0.5G0 (black), and GQPC ≈ G0 (green) showing partition 

dependence for QPC 1 but no shot noise features for QPC 2.  This confirms the existence 

of a backaction-mediated feedback loop between the shot noise and the normal 

vibrational mode.  Without a bias across QPC 2, energy transferred to the Ey-1 mode 

cannot be returned to the current, thereby breaking the feedback loop.   On left: the 

sample dimensions again correctly predict the location of the peak in the shot noise.   

2.7 Generation and Geometry of Resonant Modes 

In general as part of the shot noise piezoelectric mediated feedback loop present 

in our system, the excitation of an acoustic mode has two necessary aspects.  First as 

shown and discussed with respect to Figure 2.1, the piezoelectric polarization field that is 

associated with the crystal deformation of an acoustic mode must contribute to a bias 

across the QPC.  This is required so that acoustic mode energy can be transferred to the 

current.  Second, the induced polarization field due to bound charge induced by current in 

the ohmic contacts must closely match the acoustic mode’s piezoelectric polarization 

field.  This is required so that charge fluctuations can in turn excite the acoustic mode 

thereby transferring energy from the current to mechanical vibrations of the crystal.   
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Figure 2.12(a) shows the calculated 3D geometry [53–55] of the displacement 

field at the top, bottom and middle of the sample for the flexural acoustic mode we 

observe, which is the Ey-1 mode according to the notation of Ohno  [53].  The largest 

amplitude motion of this mode is flexural displacement in y at the ends of the sample.  At 

its center, the sample undergoes shear displacement such that it is pinched along one edge 

and bloated on the other.   An expanded view of the displacement is shown in Figure 

2.12(b), which focuses on a y-z cross-sectional plane showing the upper 50 µm of the 

crystal immediately beneath the QPC.  Downward displacement dz for negative y 

changes to upward displacements dz for positive y, resulting in a shear strain Syz at the 

QPC.   The z displacements that cause the strain are typically significantly smaller than 

the corresponding y displacements.  We write dy dz where 1   is a sample 

dependent dimensionless parameter that we determine from the mode calculations. For 

sample A, we find 100  .  A description of the method used to calculate the full 

displacement fields and the resulting strain and polarization fields is presented in Section 

6.2 of the Appendix. 
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Figure 2.12 (a) Calculated displacement field of the Ey-1 mode for Sample A.  

Approximate locations of the ohmic contacts are shown by the blue squares, while the 

QPC location is shown by the yellow rectangles.  In this figure the z displacement has 

been multiplied by a factor of 100 so that it is clearly visible.  (b) Displacement field in 

the x-z plane near the center of the crystal, within 50 µm of the surface beneath the QPC.  

The z displacement varies with y changing both magnitude and sign, giving rise to a 

strain Syz at the location of the QPC.   

The piezoelectric polarization field for the Ey-1 mode displacement field of 

Figure 2.12 is shown in Figure 2.13(a) and Figure 2.14(a).  This mode shows a dipolar z-

component of the total polarization, as well as a nearly constant component in the x 

direction that is strongest at the top and bottom of the sample.  Due to the location of the 

2DEG, the field at the top of the sample is the one directly involved in the 

electromechanical coupling.  In particular, for our sample geometry, free charge in the 

ohmic contacts induces a macroscopic layer of bound surface charge that generates an 

induced 3D polarization field that closely matches the piezoelectric polarization field.   
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Figure 2.13 (a) Schematic of polarization field for the upper portion of sample A for the 

Ey-1 mode. The z component of polarization Pz is dipolar for this mode (opposite 

orientation at opposite ends of the sample), allowing efficient electromechanical coupling 

of charge dipoles to the strain field.   The polarization also shows a nearly constant Px 

component, allowing the strain to induce transport across the QPC.  In this figure the 

value of Pz is not to scale and has been reduce by a factor of ~ 100 relative to the Px 

component. (b) Schematic of piezoelectric polarization field of an acoustic mode that 

does not generate a bias across a QPC located at the sample center or couple efficiently to 

charge dipoles at the ohmic contacts.  Pz has not been rescaled relative to Px in this figure.   

 

 

Figure 2.14 (a) Calculated piezoelectric polarization field for the top, middle, and bottom 

of the Ey-1 mode, shown as a schematic in Figure 2.13(a).  In this figure, the plotted 

value of Pz has been divided by a factor of 100 so that the much smaller Px component is 

clearly visible. (b) Calculated piezoelectric polarization field for the mode shown in 

Figure 2.13(b) as a schematic in which the field does not generate a bias across the QPC.   

This 3D geometric correspondence between the induced and piezoelectric 

polarization fields can be seen by imagining the field lines from the bound surface charge 

in Figure 2.13(a).  These field lines will be concentrated and perpendicular directly under 

the ohmic contacts and horizontal and dispersed in the middle regions of the sample, as 

with the piezoelectric polarization field.  In addition, the voltage difference between the 
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ohmic contacts means that bound charge of different signs, and hence an induced 

polarization field with opposing orientation, is generated at opposite ends of the sample, 

again in accordance with the piezoelectric polarization field.  Reflecting the disparity in 

the size of y and z displacements, the perpendicular component Pz at one end of the 

sample is up to two orders of magnitude larger than the in-plane component Px.  (Note 

that in Figure 2.14(a), Pz is divided by a factor of 100 relative to Px so that the latter 

component is clearly visible.)  Interestingly, the dimensions of our most sensitive sample 

correspond to a ratio of Pz /Px ~ 10
2
, the largest of the three samples, suggesting this ratio 

may most closely match the polarization field induced by our ohmic contact geometry.   

For the numerous modes that we do not prominently observe, either the geometry 

of the piezoelectric polarization field is wrong or its magnitude is too low.  A first failure 

in geometry is related to coupling to the external circuit.  For example, we do not observe 

any torsional modes as these couple strongly to side gates and only weakly to our surface 

gates  [56].
 
 A second failure in geometry is that the polarization field does not generate a 

significant bias across the QPC. Figure 2.13(b) and Figure 2.14(b) show an example of 

such a mode.  In particular, the circular in-plane field Pxy vanishes at the sample center, 

the location of QPCs in our experiments.  In addition to geometric considerations, many 

of the modes not excited generate strain fields, and hence polarization fields, orders of 

magnitude smaller than the flexural mode we observe.  

2.8 Displacement Analysis 

This section relates our measurements of electrical noise to displacements of the 

GaAs crystal.   Assuming a Lorentzian profile for the satellite peaks in the measured 
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excess noise power 
E

nP , we can relate the mean squared voltage noise across the QPC 

2

nV  to the peak excess voltage ,n peakV   as follows.   

Consider a driven harmonic oscillator  
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so that when driven at resonance, the magnitude of the amplitude is given by 
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The peak voltage ,n peakV  is calculated from the peak excess noise power 
,max

E

nP , the 

conductance of the QPC QPCG , the fraction of available power from the rf-QPC that is 
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transferred to our measurement circuitry 0.16K  , and the resolution bandwidth of the 

spectrum analyzer used in the noise power measurement  RBW:  

,max2 2 2
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where Qm = 15 is the quality factor of the mechanical resonance as determined from its 

spectral width, and 100  for sample A.  These expressions are used to compute the rms 

displacements dy and dz versus frequency and input power shown in Figure 2.15.  From 

this is easy to show that our oscillations are clearly non-equilibrium.  A typical thermal 

vibration yth for sample A for a lattice temperature T = 40 mK and ma = 16 mg is given by 

2

th / 0.05 fm 50 nmB ay k T m dy   .   

To estimate displacement sensitivity, we replace the mean square excess noise 

,max( / 2 )( / RBW)E

m m nf Q P in our estimate of y displacement with the HEMT amplifier 

noise floor per hertz / RBW -157 dBm/RBW,A

nP   giving a sensitivity to y displacements 

of 
111 10 m/ Hzy   .   For a smaller resonator with a width of roughly 100 nm we 
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would expect a sensitivity of 
166 10 m/ Hzy   ; this compares favourably with 

sensitivities achieved using an SET charge detector  [57].   

2.9 Fano Factor – Backaction and Electron-Electron Correlations 

In addition to macroscopic manifestations of quantum mechanical backaction, the 

feedback loop in our system also generates correlations in the tunnelling of electrons 

through the QPC as has been predicted.  As mentioned above, once the crystal is 

oscillating at its resonant frequency, the piezoelectric coupling generates an ac bias 

across the QPC at this same frequency.  Because the individual electron tunnelling rate is 

much faster than the crystal’s resonant frequency (the tunnelling current is on the order of  

~1nA = 1 GHz  >> ~ 1MH ) , the correlations in electron tunnelling are due to the 

oscillating bias causing oscillating periods in the number of tunnelling events.  This 

bunching in the tunnelling of electrons is referred to as super-Poissonian noise. 

Mathematically we can explore the correlations in electron tunnelling via a 

frequency dependent Fano factor.  For dc currents, the Fano factor is given by 

dc (0) / 2 (1 ) /I n n nn n
S eI T T T     in QPCs; super- and sub-Poissonian correlations  

(bunching and anti-bunching of electrons) correspond to dc 1  and  dc 1  

respectively.  Since here we measure photon-assisted shot noise, we define a frequency-

dependent Fano factor as 
meas

dc 0( ) ( ) / ( , )I IS S     where 
meas ( )IS   is the measured 

current noise spectral density determined from 
E

nP  and 0( , )IS   as specified above in 

equation 1.27.  As can be seen in Figure 2.15, ( ) is strongly frequency dependent.  
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Furthermore, it rises to larger than 100 near the resonant frequency of the crystal, while 

dropping to roughly 0.1 away from resonance.  The electromechanical coupling thus has 

a powerful effect on electron-electron correlations at different frequencies, with both 

strongly super- and sub-Poissonian noise coexisting in our samples.   

 

Figure 2.15  Left axis: frequency dependent Fano factor ( )  for sample A for 

68inP   dBm, showing dramatically super-Poissonian ( 100 ) and sub-Poissonian (

0.1 ) noise as a function of frequency.   The red dotted line indicates Poissonian 

noise, while the green dashed line gives the Fano factor dc( ) 0.5    expected for an 

uncoupled detector. Note logarithmic scale. Right axis: displacement dy versus 

frequency, showing the strongly non-thermal nature of the resonator dynamics.  Inset: 

displacement dy (left axis) and dz (right axis) versus input power for sample A.  The 

dashed line is a guide to the eye showing scaling as 
1/2.inP   On left: blue arrows indicate 

the dy and dz deformation of the crystal in the Ey-1 mode. 

Similar effects on correlations of electron tunnelling events in the detector have 

been predicted to occur in a generic system consisting of a detector linearly coupled to an 

oscillator  [11].  In that case, classical constructive and destructive interference effects in 

the response of the detector to the oscillator motion lead to a resonance (bunching) and 

anti-resonance (anti-bunching) in the detector noise.   Other electromechanical effects 

such as feedback  [10]  and non-equilibrium phonons  [58]  have also been predicted to 

have a pronounced effect on noise, specifically leading to super-Poissonian correlations.  
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While further analysis is required for a complete explanation of the noise in our system, 

our work clearly shows that the interplay between electrical and mechanical degrees of 

freedom in the presence of backaction-mediated feedback can have a profound effect on 

electron-electron correlations, as has been predicted  [10], [11].   

Knowledge of the Fano factor  also allows comparison of the mechanical 

response expected from the piezoelectric mediated backaction to that calculated based on 

the noise power measurements in Section 2.8.  To estimate the rms displacement dy 

expected from the backaction force, we first consider the response of a mechanical 

resonator with mass m, resonant frequency m  and quality factor Qm to white force noise 

with spectral density FS  in N
2
 per unit angular frequency.  As shown with respect to 

equation 2.2, the mean square oscillator displacement 
2 2dy y  is given by  

2

2 3 2

mF

m

QS
dy

m




 . 

We can also express the mean square displacement in terms of the mean square force dF
2
 

and hence charge fluctuation dn
2
 within the bandwidth of the resonance using 

2 ( / )m m FdF Q S , dF dn  and 
2

mk m  (see Section 2.3 ) to find 

2 2 2
2 2 2 2

2 4 2 2

2

2 2 2
m m m

m

dF dF
dy Q Q Q dn

m k k

   


   . 

On a characteristic mechanical time scale 
  
t

0
 Q

m
/ f

m
 the mean square charge fluctuation 

is of the order   
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2

0dn e It . 

Combining this with the above expression for dy gives 

2

m
m

m

e IQ
dy Q

k f

 
 , 

allowing us to estimate the rms displacement dy expected for a given current I.   

For sample A an estimated rms charge fluctuation dn in a characteristic mechanical 

response time 0 /m at Q f  is given by
0

9,000me IQ
dn e

f
  for I = 3 nA.  Due to 

piezoelectric coupling, the charge fluctuations dn generate an rms displacement 

2
46 nm.

2
m

a a

dy Q dn
m

 


    This is in good agreement with the value inferred from 

the reflected power measurement 50 nm.   This means that the tunnelling of ~9000 

electrons generates oscillations of the crystal ~ 46 nm.   

In summary the electromechanical coupling in our system provides a fascinating 

example of classical dynamical behavior of a macroscopic object whose origins lie in 

fundamental quantum statistical fluctuations.  The effect we observe is also a 

demonstration of the strength of the electric force and the dramatic impact it can have 

when a mesoscopic device generates charge imbalances in a macroscopic system.  Given 

the tremendous disparity in masses, the effect of the tiny electrons striking the crystal and 

causing it to vibrate is analogous to a flea hitting Mt. Everest and causing meter scale 

vibrations in the mountain.   
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3 Electron Spin Resonance and Coherent 

Magnet Spin Rotations 

3.1 Introduction 

Originally proposed by Loss and DiVincenzo  [59], the spins of electrons trapped 

in semiconductor quantum dots are an attractive candidate for quantum bits (qubits). The 

system is inherently scalable, is easily tunable via externally controlled parameters, and 

can be readily initialized  [14].  Read-out in a double quantum dot (DQD) system can be 

accomplished via spin-to-charge conversion  [60].  In addition the spin relaxation times 

T1 are on the order of milliseconds  [61],[62] and decoherence times T2 as long as 200 μs 

have been achieved  [63].  While weak coupling of spin with the environment enables the 

long T1 and T2 times, it also presents significant challenges related to the coherent 

manipulation of spin information.   

One of the most direct mechanisms for achieving these coherent rotations is 

electron spin resonance (ESR)  [64], [65].  In ESR a large constant external magnetic 

field Bext is applied to a spin to create a Zeeman energy Ez splitting between the up and 

down Sz eigenstates.  In addition a smaller transverse ac magnetic field Bac is applied at 

the resonant frequency of the Zeeman splitting fz = Ez/h = eBext/h, where e is the 

gyromagnetic ratio for the electron.  By controlling the amplitude, phase, and duration of 

the ac magnetic field Bac, it is possible to achieve arbitrary rotations including simple spin 

flips.  
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Two principal challenges in locally addressable ESR are: (1) the creation of a local 

field differential ∆B so that different dots have different resonant frequencies and (2) the 

generation of large ac magnetic fields Bac that are not accompanied by significant ac 

electric fields Eac.  Part of my research efforts has been focused on a project to develop a 

system for ESR in which a lateral semiconductor double quantum dot is coupled to an 

externally generated ESR field.  On chip ESR fields have previously been employed to 

perform ESR, but these systems have been challenged by an ill-defined electromagnetic 

environment.  In particular, the presence of significant ac electric fields Eac have caused 

sample heating and unwanted photon assisted transitions complicating the operation and 

interpretation of these ESR approaches  [65].  Some current efforts have made progress in 

well defining spin manipulation with all electrical controls  [60].  The strength of our 

system with the external generation of the ESR magnetic field is that we are able to 

carefully engineer the electromagnetic environment so that we can place the DQD sample 

at a peak in the magnetic fields Bac and a node in the electric field Eac. 

This chapter reviews the physical set-up we employed for ESR manipulation, the 

Hamiltonian of this system, measurements enabled by our approach and the data we 

collected.  The physical system discussion includes a review of the off sample stripeline, 

of the different sample geometries we employed and of the nano-magnets we used for the 

generation of a local field differential.  The Hamiltonian discussion reviews the 

energetically accessible two electron singlet and triplet eigenstates and then explores how 

the energetics of the system can be used to appropriately manipulate the desired states. 

As our system is capable of arbitrary coherent spin manipulations, the enabled 

measurements include not only determinations of fundamental parameters such as T1, T2, 
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and 
*

2T but also numerous significantly more involved explorations. The data presented 

includes a discussion of the results obtained and a review of the devices we measured and 

the constraints we encountered.   

3.2 Physical System 

The primary components of our physical set-up are: 1) the design and architecture 

of the stripeline and its integration with the DQD sample and 2) the various sample 

geometries that we employed to combine charge sensing, an on-chip matching network, 

the stripeline, and the nano-magnet. 

As shown in Figure 3.1, our novel approach for generating a large ac magnetic field 

Bac employs a stripline geometry (a narrow conductor with a width w separated by 

dielectric from upper and lower ground planes).  A fundamental constraint on our system 

is limiting the external magnetic field Bext ≈ 0.3T to a regime where our rf-SET charge 

sensor remains superconducting.  This sets our resonant frequency fac = g
*
μBBext / h ≈ 

2Ghz.  The stripline is chosen ac/2 in length with one end terminated in an open circuit.  

Given the boundary conditions, a standing wave develops with a maximum in the ac 

magnetic field Bac (and a node in Eac) at a distance /4 from the end of the stripline.  At 

this location we cut an electrically narrow slot and mechanically insert our mounted 

sample to make contact with the base of the stripline.  According to our conformal 

mapping calculations, the stripline should generate a Bac ≈ 1.5 mT at a distance of 5 μm.  

This corresponds to a gating time τπ ≈ 50ns, TRabi = 2h/( g
*
μBBac) = 2τπ.   
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Figure 3.1 Schematic diagram of stripline geometry for generating an alternating 

magnetic field Bac at the sample surface:  (a) a perspective drawing of the stripline 

showing the electrically narrow slot at λ/4 where the sample is inserted, (b) an end-view 

highlighting the width w of the central conductor and the thickness b of the stripline, and 

(c) a magnified cross-sectional view at the location of the sample mount indicating the 

directions of Bext and Bac and the location of the sample wiring. 

As detailed in Sections 4.3.3 and 4.3.4 in the experimental techniques chapter, 

bring the sample within 5 μm of the center conductor of the stripeline is a non-trivial 

experimental undertaking.  This required a custom designed sapphire grinding apparatus 

and a specialized mounting apparatus.  As part of our approach, we also developed 

specialized procedures that allowed us to achieve the tight physical tolerances. 
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Figure 3.2 Images of the sapphire half stripelines with the electrically small notch that 

allows samples to be brought in close proximity to the central conductor.  To form a 

stripeline, two stripeline halves are mated, each having an Au ground plane and one 

having a central conductor.  The stripeline halves on the left and bottom of the image 

show the inside surfaces that are mated.  As shown, the central conductor is placed on 

one of the halves.  The stripeline half on the right shows the outer ground plane. 

The final system that we used included an on-chip matching network, a charge 

sensor, and gate geometries allowing for the integration of the stripeline and the 

nanomagnet.  Figure 3.3 shows the device geometry in which the integrated charge 

sensor is a superconducting SET.  As shown, the device includes a standard DQD gate 

architecture in which the sickle shaped lower left and right gates function as plunger 

gates allowing for an adjustment of the chemical potential of the left and right dots.  The 

use of the sickle gates for chemical potential adjustment allows for the elimination of 

separate plunger gates. This simplifies the design and increases device yield.  The upper 

left and right gates are used to form tunnel barriers with the central gate as part of the dot 

formation.  Unlike in earlier designs, the upper gates are separated from the lower sickle 

gates to facilitate fast manipulation of the dot potentials and to allow this manipulation to 

be independent of the voltages required for proper tunnel barrier formation. As discussed 

in Section 4.3.3, the alignment of the SET and the nanomagnet are experimentally 
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challenging steps that required the development of specialized procedures to achieve high 

yield. 

 

Figure 3.3 SEM image of DQD device similar to those measured with a nanomagnet 

(false color red) and an SET as a charge sensor. 

To achieve the local field differential ∆B as shown in Figure 3.3, we fabricated a 

small (on the order of 200nm × 50nm × 50nm) permalloy (Fe:Ni 78:20) magnet above 

one of the QDs in a DQD. Using a finite-element modelling package (FEMLAB), we 

have estimated ∆B at 10-20mT at the 100nm depth of our 2DEG.  This difference in 

Zeeman energies ΔEz corresponds to a difference in resonance frequencies Δfz = ΔEz /h ≈ 

90 Mhz, which should be more than adequate for local resonant tuning.  

3.3 System Hamiltonian 

 For our system we consider two electrons trapped in the double well potential of a 

DQD.  In this analysis we confine ourselves to a bias regime where the possible dot 

occupancies are the electrons separated in different dots (1,1) or both confined to the 
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right dot (0,2).  Prior to the perturbation introduced by the nanomagnet, the eigenstates of 

the system are the separated (1,1) triplet 
1101111

,, TTT 
 and singlet 

11
S  states as 

well as the (0,2) singlet state 
02

S .  Given the size of our dots, the (0,2) triplet states 

02
T  lie ~ 100’s μeV above the (0,2) singlet state 

02
S  and are energetically 

inaccessible.  Therefore, these states are not considered here.  Including the perturbative 

effect of the nanomagnet δh and a tunnel coupling t between the singlet states 
11

S  and

02
S , the Hamiltonian H0  for our system is 

02111101111
SSTTT   
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where the detuning parameter 2)( RSL    and L  is the chemical potential of the 

left dot and RS  is the chemical potential for placing a second electron in the right dot in 

the 
02

S  state.  The z-axis Zeeman term  zz E  δh includes a component Ez= -

g
*
μBBext ≈ 7 μeV for the external magnetic field and one δh = -g

*
μB ΔB/2 ≈ 0.2μeV for the 

nanomagnet field.  Typical tunnelling couplings in GaAs are of the order t ~ 10’s of μeV.  

The detuning parameter Δ adjusts the energetics of the system thereby controlling mixing 

between the original eigenstates and determining which states are energetically favorable.  

For example consider the new low energy eigenstate of the perturbed system  , which 
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will be discussed in more detail with respect to Figure 3.5.   In the bias regime that we are 

considering, at least one electron is always present on the right dot.  As shown in Figure 

3.4 when the detuning parameter Δ = 0, the chemical potentials of the left and right dots 

are equal and the system oscillates between the (1,1) and (0,2) charge states.  When Δ is 

negative, the favoured charged state is (1,1), and, similarly, when Δ is positive, the 

favoured charged state becomes (0,2). 

 

Figure 3.4 A schematic diagram of the charge states of a DQD corresponding to different 

values of the detuning parameter 2)( RSL   .  In the bias regime considered, the 

right dot is always occupied with at least one electron.  When the chemical potentials of 

the two dots are equal, the system oscillates between the (1,1) and (0,2) states.  This 

corresponds to the chemical potential of the left dot μL being equal to the charging energy 

EC of the right dot.  When the μL < μRS, the system is in the (1,1) state and when μL > μRS,  

the system is in the (0,2) state. 

 The eigenenergies for the coupled perturbed system can be solved by 

diagonalizing the Hamiltonian H0.  As shown in Figure 3.5, the external field Bext 

separates the energies of the parallel triplets 
1111

,  TT  which remain eigenstates of the 

system and only mix with the other states at discrete energy crossing points (circles).  At 

small detuning values (Δ ≤ t), the states 
0211110 ,, SST strongly mix (yellow) and the 
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resulting eigenstates 
  ,, 0

 are labelled in order of increasing energy.  Due to the 

presence of the nanomagnet at large detuning values (|Δ| » t), the approximate eigenstates 

are given by 
0211111111

,,,, STT  .  In this analysis the nanomagnet is placed 

on the right dot and is parallel to Bext resulting in
11

 having a lower energy than
11

 .   

 

 

 

 

Figure 3.5 A schematic diagram of the eigenenergies of a DQD system with an 

integrated nanomagnet and an external magnetic field Bext as a function of the detuning 

parameter 2)( RSL   .  At small detuning (Δ ≤ t), the states 
0211110 ,, SST

strongly mix (yellow lines).  Circles highlight the points where mixing occurs between 

the triplet states 
1111

,  TT  and other states of the system. 

It is useful to note that  
111102

1

11
ST   and  

111102
1

11
ST  .  This is 

especially relevant for read-out measurement schemes.  As tunneling preserves the total 
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spin state, this means that there is a finite probability of either 
11

  or 
11

  tunneling 

to 
02

S   when the detuning parameter Δ is swept from the (1,1) to the (0,2) state.  

3.4 Prospective ESR Measurements 

  With the ability of our ESR set-up to coherently rotate addressable spins, we have 

a flexible platform for numerous experiments.  The first order measurement is simply a 

demonstration of the proper operation of ESR in the system.  The next series of 

measurements would likely include the relaxation time T1, the decoherence time T2, and 

the time-ensemble-average decoherence time 
*

2T   [66],  all important phenomenological  

parameters regarding the coherent evolution for any ESR DQD system.  In addition, with 

a tuneable ESR DQD system, we should be able to perform a partial Bell-state (parity) 

measurement on our two qubit system.  This measurement is a central component in a 

proposed universal gate set based entirely on single qubit operations  [67], [68].  In 

addition to simplifying potential implementations, such an approach would avoid the 

charge dephasing that is associated with the two-qubit operation of exchange based 

systems  [60], [69], [70].
 

The demonstration of ESR in our system is based on the spin-to-charge conversion 

enabled by spin-blockade  [60], [71].  As shown in Figure 3.6, spin blockade can be 

established by first tuning the DQD system so that a single electron is trapped in the right 

dot.  The large spacing in the right dot’s chemical potential levels corresponds to the 

charging energy EC  associated with placing both electrons on the right dot.  When in the 

(0,2) state, both electrons are assumed to be in the same single particle ground state, and 
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the Pauli Exclusion Principle requires that the spins have opposite orientation.  The 

smaller energy separations for the left dot correspond to the Zeeman splitting.   

 

Figure 3.6 Transport through a DQD becomes spin blocked whenever the spins are 

aligned parallel.  An ESR pulse resonant with the left dot lifts the spin blockade. 

Transport through the dot occurs through the sequence (0,1)→(1,1)→(0,2)→(0,1).  

This sequence is enabled as long as the spin of the tunnelling electron differs from that of 

the trapped electron.  Transport, however, becomes spin blocked whenever the spins are 

parallel.  With an ESR pulse resonant on the left dot, spin-blocked electrons can be 

flipped thereby recommencing transport.  If the tunnelling rate Γr 
 
« Γm, Γl, then the spin-

flips will shift the average state of the DQD from (1,1) to (0,2), an easily detectable 

difference. 

 Central to spin manipulation measurements is the rapid initialization of the 

system.  Referring to Figure 3.7, the system is first placed at the point L in the charge 

stability diagram.  At the point L, the sequence 
0202

)1,0( ST   is energetically 

favorable.  This ensures that regardless of the initial (0,2) state the DQD will be in
02

S

with a high degree of probability after a time on the order of the (0,2) ↔ (1,1)  tunnelling 

time.  The system is then ramped to the point P.  Here the detuning Δ is large and 
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positive, and the state is
02

~ S .  After a settling time ~200ns, the gates are slowly 

ramped to the point C.  The ramping is long with respect to the slowest time scale of the 

system h/δh ≈ 20ns.  As this passage is adiabatic, the system should remain in the ground 

state which at the large negative detuning of the point C means that the state

11
~ .   

 

Figure 3.7 A DQD stability diagram showing the points used for initialization and read-

out.  

 After initializing in the state
11

 , a procedure to measure T1 is to simply wait a 

period of time τ1 before projecting onto the 
02

S  state.  This measurement step 

corresponds to sweeping the gates back to the point M at large positive detuning.  If one 

of the spins has flipped thereby relaxing the system into
11T , then the system will be 

blocked in the (1,1) state.  Varying τ1 will give a measure of T1.  A procedure for 

measuring T2 is to use an ESR field to drive Rabi oscillations between, for example, the 

11
  and 

11T  states. The period over which the oscillations decay should give a 

measure of T2 
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 The ability of ESR to achieve arbitrary coherent rotations is a powerful tool that 

should enable the exploration of an implementation of a Fermionic Bell State analyzer  

[67].  One of the most significant advantages of such an approach is that entirely 

magnetic control enables potentially long decoherence times T2 .  Theoretically the 

intrinsic decoherence time of an isolated spin T2 in a GaAs dot has been estimated as 1-50 

μs  [66], [72].  Experimentally the time-ensemble-average for a collection of spins T2
*
, 

which sets a lower bound on T2, has been measured as on the order of 10-100 ns  [60], 

[69].  Using a multiple-pulse Carr–Purcell–Meiboom–Gill echo sequence, a recent 

experiment extended the decoherence time to more than 200 μs  [63].  These T2
* 
times are 

based on singlet-triplet qubits which are inherently sensitive to charge fluctuation 

dephasing as their eigenstate energy separation is based on the electrically mediated 

exchange operation.  In a system not dependent on the exchange interaction, control 

sequences to dynamically decouple electron spins from the nuclear spin reservoir might 

well be able to achieve longer T2.  With a gate operation τπ ~ 50ns, coherence times on 

the order of 500 μs would correspond to a Q ~ 10
4
. 

3.5 Data 

The DQD samples we used to perform ESR measurements were complicated and 

required numerous fabrication and mounting steps, each with a yield less than unity (see 

Section 4.3). Despite being a significant challenge, careful dedicated work allowed us to 

reduce these risks to manageable levels.  In all we were able to cool and take data from 

over fifteen samples.  These samples included eleven DQDs with rf-QPCs as the charge 

sensor and four with rf-SSETs as the charge sensor, see Appendix Section 6.3.  Given 
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their simpler structure, rf-QPC samples were included in part to increase our throughput 

and device yield.  Our ultimate constraint in being able to perform ESR measurements, 

however, were issues of material performance and stability combined with the time 

intensive nature of the sample fabrication as well as other experimental challenges.  The 

material and device issues included charge instability, noisy QPC charge sensing current 

and an unresolved weak electrostatic coupling of the SET to the dot charge and island 

gate.   

In virtually all instances the presence of a 2DEG with an acceptable resistance 

required the introduction of carriers through illumination with an LED.  To make this 

process as gentle as possible, our final approach to cooling down samples included 

current biasing the LED’s in the range of ~ 1 μA, corresponding to a few μW’s of power.  

As shown in Figure 3.9 with this gentle illumination technique, we were able to form 

reasonable dots with some samples.   

 

Figure 3.8 Coulomb oscillations corresponding to a single dot formed using the outer 

gates of a double quantum dot pattern.  The charging energy EC
 
is computed from ΔVg by 

the ratio η  = Cg /C ~ 0.1, EC = eη ΔVg = (e
2
/Cg)( Cg /C) ≈ 15 meV.   
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The low noise introduced by our measurement set-up is evidenced by the fact that 

the current data shown in Figure 3.8 was taken with a dc bias with the output signal being 

fed into a digital oscilloscope for monitoring.  We used this simplified measurement 

approach when forming dots as monitoring the current in real time on the oscilloscope 

allowed us to explore the large parameter space associated with determining the 

appropriate gate voltages in a reasonable time frame. 

The coulomb oscillations shown in Figure 3.8 were at times stable on the scale of 

minutes to hours.  After periods of stability, however, the device performance frequently 

spontaneously transitioned to one in which charge hoping was pronounced. Such typical 

unstable behaviour is shown in Figure 3.9 in which the coulomb oscillations for two 

sequential voltage sweeps are recorded.  The time from the beginning of the first sweep 

to the end of the second sweep was on the order of 10 minutes.  As can be seen, there is a 

commonality in the oscillation structure at smaller gate voltages.  At more negative 

voltages, however, the oscillations are noisy, not well formed and not repeatable.   

 

Figure 3.9 Typical coulomb oscillations for a sample displaying unstable behavior.  The 

red and blue current traces were taken in succession with all the data having been 

collected in about 10 minutes  



78 

Once stable behaviour had been demonstrated for a particular dot, we would at 

times thermally cycle the sample to restore such behaviour if a disturbance or a particular 

cool down resulted in erratic performance.  For one of our most promising samples, 

Sample 11, we performed a total of 6 runs.  Ultimately noise in the QPC charge sensing 

current prevented operation in the few electron regime and at high frequency.  Figure 

3.10 shows correspondence between the dot coulomb oscillations and changes in the 

QPC current.    

 

Figure 3.10 A plot of the dc currents through a dot and an adjacent charge sensing QPC 

showing a correspondence between the dot current’s Coulomb oscillations and changes in 

the QPC current for Sample 11.  Noise in the QPC current prevented its ac operation and 

its effective use as a charge sensor. 

As can be seen, however, the QPC current is noisy.  To investigate this we recorded the 

QPC current over time with no dot present and the filtering removed.  When biased near 

a ½ plateau, the current showed random variations on the order of ~ 0.5 nA.   
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Figure 3.11 A record of the charge sensing QPC biased near ½ plateau as a function of 

time with no filtering and no dot formed for Sample 11. 

To use a QPC as a charge sensor requires a relatively clean current signal in which the 

QPC is biased around a ½ plateau and changes in the differential conductance are 

recorded and correlated with changes in the local electromagnetic.  The variations in QPC 

current shown in Figure 3.11 appear to be inherent to the sample and were too significant 

to allow its effective use as a charge sensor.   

We have confidence in our overall measurement set-up as with pre-ESR samples 

we were able to effectively perform charge sensing with a QPC.  For example the data 

shown in Figure 3.12 is from a DQD device that included both SET and QPC charge 

sensing. The data shows clear correspondence between changes in the QPC current and 

changes in the charge state of the dot.  In particular the relatively clean QPC signal 

allowed the charge sensing to continue past the point where the dot tunnel barriers had 

become too opaque for a direct current measurement. 
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Figure 3.12 Charge sensing in a DQD using an adjacent QPC.  Dips in the QPC 

differential current correlate with coulomb oscillations in the dc dot current.  The charge 

sensing in the QPC continues past the point where the tunnel barriers are pinched off for 

a direct current measurement. 

Figure 3.13 shows the promising performance of the rf-QPC for Sample 11.  The 

best impedance matching, i.e., the lowest reflected power where 0  , occurred when 

the QPC was biased around the second plateau. Subtracting off the 2.2 kΩ ohmic contact 

resistance, yields a channel resistance for best matching of 5.15 kΩ.  Using equation 1.21 

20 1
1

dR

C
L

LC


 

and equation 1.22 with an assumption of perfect matching 

50
d

L
Z

CR
  

  

yields lumped parameter model values of 428 pFC  and 110 nHL  for a resonant 

frequency of 0 2 729MHz.    
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Figure 3.13 RF performance of the charge sensing QPC for Sample 11.  The reflected 

power spectrum shows that the best impedance matching occurred when the QPC was 

biased around the second plateau.  

Ideal operation of an rf-QPC corresponds to perfect matching when biased around 

½ plateau where charge sensitivity is the greatest. This is approximately a five-fold 

increase in resistance relative to sample 11.  Equation 1.22 requires a corresponding 

reduction in C or increase in L.  To keep the resonant frequency within the 700MHz -1.2 

GHz bandwidth of our HEMT cold amplifier, offsetting changes to both the capacitance 

and inductance would likely be the best approach.  This should be experimentally 

achievable as the inductance can be increased with additional turns and for other samples, 

we have routinely had capacitances in the range of 100 to 150 nH.   

As shown in Figure 3.14, we also formed dots in devices in which a 

superconducting SET was used as the charge sensor.  As mentioned with respect to 

Sample 8, the Coulomb oscillation data shown in Figure 3.14  for Sample 9 was taken 

with a simplified set-up to facilitate the exploration of dot gate parameter space.  The 
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current data and the ramp gate data are both plotted as a function of time mimicking the 

output plotted on the oscilloscope.  At times as shown in Figure 3.14, Sample 9 displayed 

reasonably stable behaviour but overall charge fluctuations remained a problem with this 

sample. 

 

Figure 3.14 Coulomb oscillation data for Sample 9, a DQD device with an integrated 

RF-SSET as a charge sensor. 

Figure 3.15 shows the I-V curve for the charge sensing SSET of Sample 9.  The 

SSET is well formed showing the traditional sub-gap features including the central super 

current peak as well as the Double Josephson Quasi Particle (DJQP) and Josephson Quasi 

Particle (JQP) peaks  [38], [42].  
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Figure 3.15 DQD integrated charge sensing SET I-V curve for Sample 9. 

The unresolved problem for Sample 9 was poor coupling of the SSET to its 

electrostatic environment.  For both Sample 9 and Sample 10, also an ESR rf-SSET 

device, it was not possible to modulate the current features of the SSET.  In particular, 

neither SSET responded to voltages applied to the SSET island gate or to charge 

oscillations in the dot.  Pre and post run optical and SEM investigation of the sample 

leads and device fine structure showed no evidence of breakage or systemic lithographic 

errors.  The proper I-V behaviour of the SSET also argues against lithographic problems 

as the SSET leads, fabricated at the same time as the SSET island gate, were clearly 

continuous.  The SSET island gate was 200 nm from the island, comparable to the 

distance of other SSETs routinely fabricated in the lab.  One possible mechanism for the 

lack of SSET modulation is related to the shallow 57 nm depth of the 2DEG for the 

material used for Samples 10 and 11.  It is proposed to explore this as the failure 

mechanism by fabricating a pair of SSETs on a piece of 2DEG material in which one 
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SSET is deposited on an etched surface and one on a pristine surface to evaluate 

differences in performance, especially with relation to modulation. 

The final experimental challenge encountered was a helium cold leak in the inner 

vacuum can (IVC) of the Kelvinox 400 dilution refrigerator.  Out of the final seven runs, 

four were terminated due to a cold helium leak. The suspected culprit is the IVC can 

itself.  The container was partially crushed during its original shipment and was made 

operational by the Oxford technician hammering a cone wedge into the top opening to 

restore a nominally round shape.  Given the potentially time consuming nature of 

resolving the IVC issue, such as ordering a new IVC can, it was decided to transition 

experimental operation of the recondensing cryostat to the cavity-SSET experiment while 

the cold leak was addressed.  

In summary, the fabrication and mounting of the DQD ESR samples with on-chip 

matching network and integrated rf QPC or SSET charge sensor was time intensive and 

required meticulous work.  Diligent effort, however, yielded numerous samples from 

which dot and rf data was collected.  The ultimate limitation in terms of proceeding to 

ESR spin manipulation in the few electron regime was material stability and cryogenic 

challenges. As a continuation of the ESR project in the future, a strong candidate material 

is SiGe with a strain induced 2DEG.  The material and device fabrication techniques for 

the SiGe material used in our lab have proceeded to the point were stable dots are 

regularly formed.  In addition, the lack of a nuclear spin background eliminates one of the 

main decoherence mechanisms and offers the prospect for potential longer coherence 

times, a crucial metric for any spin based information processing system. 
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4 Experimental Techniques 

4.1 RF-QPC Device Details 

The QPC samples were produced from GaAs/AlGaAs heterostructure material 

containing a two-dimensional electron gas with sheet density ns = 1.3 x 10
11

 cm
-2

 and 

mobility 6 23 10 cm /V s    at a depth of 100 nm below the crystal surface.  The 2DEG 

material was supplied by Loren Pfeiffer of Princeton University and identified by 3-

30_05.2.  Annealed ohmic contacts were either pressed In (sample A) or thin film 

Ni/Au/Ge alloys (all other samples) with typical lateral dimensions on the order of 

100 µm.  A mesa was etched to remove the 2DEG from most of the surface, except for 

the ohmic contacts and a relatively narrow channel (typically a few hundred microns 

wide) where the QPC was formed.  Au surface Schottky gates for defining the QPC were 

patterned using standard electron beam lithography techniques and thermal evaporation.  

Sample geometries presented in Figure 2.8 and Figure 2.9 were measured by optical 

microscopy giving la = 2.83 mm and wa =  2.10 mm for sample A, lb = 1.47 mm and wb = 

1.58 mm for sample B and lc = 1.87 mm and wc = 1.93 mm for sample C.  All samples 

had a height h = 0.5 mm.   Based on the sample geometries, the sample masses are 

estimated as A, (B), [C] as m ≈ 16, (6.2), [9.2] mg.  Given the molar mass of GaAs, this 

corresponds to a total of 20 19 191.3 10 , (5 10 ), [8.1 10 ]   atoms.  For electrical 

measurements, samples were secured to a printed circuit board mount using rubber 

cement.   
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As discussed in Section 2.6, two perpendicular QPCs were used to evaluate the 

existence of the feedback loop.  The device pattern used for this part of the experiment 

underwent a few iterations.  The first pattern consisted of the two perpendicular QPCs 

being formed around the top and side of the same point on the sample.  This pattern failed 

to function effectively as the positive bias used during cool down for each QPC interfered 

with the conductance through the other.  The final pattern consisted of several QPCs for 

each direction to allow for material variations.  In addition the parallel QPCs and the 

perpendicular QPCs were displaced from each other by several microns to ensure that the 

positive bias used during the cool down and any residual 2DEG shadow from the gates 

after being energized did not interfere with the operation of the other set of gates.   

The rf-QPC data also suggests that there is some material dependence in the 

performance of the piezoelectric feedback loop. This is not surprising given the 

complicated and specific nature of the GaAs/AlGaAs heterostructures used to form 

2DEGs.  Material from Vladimir Umansky’s group at the Technicon in Israel was also 

used during the rf-QPC experiment.  As shown in Figure 4.1 and Figure 4.2 material from 

the batch 8-271 yielded well-formed stable QPC plateaus but the rf data displayed 

additional features that were not easily interpreted.  The data did, however, show proper 

partition dependence and power scaling, i.e., 
1/2~ .inP   With samples from the 8-145 batch, 

it was difficult to form conductance plateaus and the rf data did not show clear partition 

dependence. 
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Figure 4.1 QPC differential current data showing well-formed plateaus for a device 

generated with Umansky material from the batch 8-271. 

 

 

Figure 4.2 RF data from a QPC formed with Umansky material from the batch 8-271 

showing additional features not easily interpreted. 
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4.2 RF-QPC Measurement Set-Up 

As part of our QPC data collection, we used both a Kelvinox 100 dilution 

refrigerator with a base temperature of T ≈ 25 mK and an effective electron temperature 

Te ≈ 80 mK (rf-QPC Samples A and B) and a Heliox pulse-tube cooled 
3
He refrigerator 

with a base temperature T ≈ 290 mK (sample C).  The dc lines pass through cascaded π-

type, microwave filters, and RC filters.  On the Kelvinox 100 [
3
He cryostat], there are 

copper powder [copper and stainless steel powder] microwave filters.  The input rf lines 

have approximately 48 dB [35dB] of attenuation to filter incoming broadband radiation 

from room temperature.  The input rf signal is fed to the sample by a directional coupler 

and then combined with the dc signals by a commercial 100kHz – 18 GHz bias-tee 

(Paterneck 1406).   

Signals reflected from the sample pass through the main line of the directional 

coupler and then a circulator.  To minimize initial signal loss, the rf cabling from the 

sample to the circulator is superconducting Nb (except in the case of sample A).  The 

circulator serves to isolate the sample from noise sources on the output line.  After the 

circulator, the output line includes a QuinStar cryogenic HEMT amplifier (Gain = 35 dB 

[26 dB]) with a noise temperature of 2.3K [9.5K] followed by a Miteq GaAs FET 

amplifier (Gain = 40 dB [38 dB]) at room temperature.  

The complete dc and low frequency measurement set-up employed for samples B 

and C is shown in Figure 4.3.  The heart of the measurement set-up is an ultra-low noise 

current amplifier that is wired in a floating configuration.  Most of the electrical 

components including the ultra-low noise current and voltage amplifiers, the precision 
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voltage references, and the optical isolators were built by members of the lab based on 

original designs by Alex Rimberg.  The measurement set-up for sample A is similar with 

a different configuration for the grounding of the current amplifier.  This configuration is 

fully described in the thesis by Madhu Thalakulum  [41], a 2007 graduate of the Rimberg 

Lab. 

 

Figure 4.3 Complete dc measurement set-up for rf-QPC samples B and C.  A simplified 

set-up in which the differential excitation voltage dV was not measured directly was 

frequently employed. 

In measuring the conductance of the QPC as shown in Figure 4.3, the ac bias 

excitation was taken as the output from a Stanford Research Systems RS-830 lock-in 

amplifier.  To isolate the sample from the ground of the lock-in, the excitation was passed 

through an optoisolator.  This ac signal was then combined with the dc bias in a coupling 

divider box  [21]  that reduced the ac signal by a factor of 10
5
 and the dc signal by 10

3
. 

The ac + dc bias was feed into the non-inverting input of the current amplifier which 

through the virtual internal short placed the bias on the inverting input which was 

connected to the sample. In floating configuration, the (+) output of the current amplifier 
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was taken relative to the (−) output of the internal board ground.  This differential signal 

was converted to a single ended one by a voltage amplifier set to a unity gain.  The ac 

current signal was then fed into a RS-830 lock-in whose ground was again isolated by an 

optoisolator before being passed to the analog-to-digital converter of the computer data 

acquisition board.   

In the complete measurement set-up the, ac voltage bias signal is directly measured 

from the sample and feed into a voltage amplifier, a lock-in and then the computer.  As 

the ac voltage bias was found to be well maintained at the 20 μV value nominally applied 

after the coupling divider, direct measurement of the ac bias was eliminated in a 

simplified measurement set-up employed in some instances.  As with the dc component 

of the bias voltage, the gate voltage was set with a precision voltage reference.  This 

signal was sent to a voltage amplifier and passed to the computer.  This configuration for 

setting the gate voltage was used when the QPC conductance needed to be carefully set 

and maintained, such as when the rf signal was measured at various conductance values 

to determine power and partition dependence.  When the overall performance of the QPC 

was characterized by measuring the conductance plateaus, the voltage reference was 

replaced with a voltage sweep box.  In addition when modulation of the QPC gate was 

required an ac voltage source was added was to the line. 

4.3 General Fabrication with Details Specific to the DQD ESR Samples 

Including Mounting and Stripeline Alignment 

 The fabrication and mounting procedures for the DQD ESR samples with on chip 

matching network and integrated rf charge sensor were complex requiring a methodical 
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approach.  Given the device configuration required for integration with the off-chip 

stripeline, only one device could be located on each chip.  Even when the procedures 

were fully tuned and working properly, device fabrication required two to three weeks of 

intensive effort for each sample.  To maximize throughput and yield, we employed 

dummy testing for sensitive steps and parallel processing of at least two real samples for 

each fabrication run.  Device preparation included fabrication, wire bonding, stripeline 

alignment, and mounting to the fridge.   

4.3.1 Device Fabrication 

A fabrication run began with the careful cleaving of a new chip from the original 

wafer. The generation of a device then included six separate lithographic and 

metallization stages: alignment marks, etch, ohmic contacts, large gates, dot fine 

structures, nanomagnet, inductor, and SET, when present.   

  To minimize the scratching that was introduced by repeated cleaving of the wafer 

as new samples were prepared, we covered the entire original waver with a protective 

layer of resist spun on at low speed, ~1,000 rpm,  and baked at a low temperature,  ~100 -

150 °C.  Prior to applying the protective resist layer to remove native oxide which can 

inhibit the formation of good ohmic contacts, we dipped the wafers in a surface 

refreshment solution of HCL:H20::50:50 for 20 seconds.  The procedure that I adopted 

for the careful cleaving of the wafers included: making a small scratch on the outer edge 

of the top surface of the chip, removing particulate remnants with a spray of IPA, 

inverting the chip and placing the chip on two pieces of cleanroom lint free tissue so that 

the scratched section of the chip was suspended between them with a few millimeter gap 
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on each side.  I then pressed down gently on the backside of the chip directly over the 

scratch with the end of a pair of tweezers that had been wrapped in a tissue sheet to 

provide a cushioning effect. If the chip did not easily cleave, I introduced a slightly 

deeper scratch and repeated the subsequent steps.  I found that effective cleaving was best 

achieved by repeatedly scratching until gentle pressure fractured the chip as opposed to 

exerting forceful pressure initially to induce a crack. 

To eliminate potential current leakage paths and to improve high frequency 

performance, the 2DEG was removed from all parts of the sample except for those 

required for dot formation and current measurements.  Based on the suggestion and 

investigation of Mustafa Bal, we replaced the lab’s traditional citric acid etch with a 

phosphoric acid etch that had a more consistent etch rate through the different 

heterostructure layers and resulted in a smoother surface and cleaner interface.  After 

experimentation, the concentration that we employed was H3PO4:H2O2: H2O::1:1:204.  

Over a range of times, this yielded an etch rate of approximately 4.3 nm/s.  The etch 

solution temperature 21.3 °C.  The etch step was preceded by oxygen RIE descumming at 

100 mT and 25 watts and followed by an IPA rise for 10 seconds. 

For different samples, optimization of the ohmic annealing recipe was required to 

account for the different material composition and 2DEG depth. This was easily done by 

preparing one or more small sample pieces with simple ohmic patterns and progressively 

annealing and testing the ohmic resistance.  The annealing was done in an enclosure built 

by Alex Rimberg that has a sealed top, inlet and outlet ports for the controlled flow of 

gas, and a resistance heated sample space driven by a Variac voltage control. The sample 
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space has an attached thermocouple for precise temperature monitoring. The lab has a 

probe station that includes fine adjustment in x and z that in combination with the long 

focal length Meiji microscope allows for the resistance of samples to be checked in a 

straight-forward manner.   

Although we were careful not to waste material, we made sure to use good 

representative material from the center of a wafer for the ohmic testing as edge material 

had been found to have poor and inconsistent properties.  In addition, even with the 

testing, we made sure to check the ohmic resistance for each real sample to avoid the 

commitment of significant time resources on an errant faulty piece.  The probing of the 

real samples was done with considerable care so as to avoid damaging the surface.  

As part of fabrication of the dots and the SETs, we employed standard lithographic 

and metallization techniques that are well described elsewhere.  For example see theses 

from this lab by Weiwei Xue  [42],  Madhu Thalakulum  [41]  and Wei Lu  [40].  The 

system we employed was a FEI XL-30 ESEM-FEG (field emission gun environmental 

scanning electron microscope) with Nabitity’s Nano Pattern Generation System (NPGS) 

lithographic software.  The director of Dartmouth’s Electron Microscope Facility is Dr. 

Charles Daghlian who was a tremendous asset to our research efforts by maintaining the 

facility, despite extensive and varied use, in excellent operating condition. 

The alignment of the nanomagnet and the SET finger for coupling to the dot were 

two of the most sensitive lithographic steps in the fabrication process.  Crucial in the 

success that we achieved was a procedure developed by Mustafa Bal that reduced the 

alignment variation from 30-50 nanometers to remarkably less than 10 nanometers for the 
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nanomagnet and 10 – 30 nanometers for the SET finger. Figure 4.4 shows a dummy 

device with an integrated nanomagnet over the left dot and SET finger entering the right 

dot. 

 

Figure 4.4 SEM image of dummy DQD device with nanomagnet (false color red) and 

SET, each deposited during separate lithographic steps.  The alignment accuracy of the 

separate lithographic steps was on the order of 10-30 nm. The surface particles attached 

to the gates are resist remnants that accumulated due to the repeated processing and 

storage of the dummy array. This is the same image as Figure 3.3, reproduced here for 

convenience. 

By reducing the alignment variation, we were able to decrease the separation between the 

gate electrodes.  The top middle (TM) and top left (TL) gates were used to form the QPC 

tunnel barrier that separated the double dot from the electron source reservoir.  It was 

important the TM and TL electrodes were close enough that the QPC properly formed 

before the dot became depleted by the application of the negative gate voltages.  

Similarly, the separation between the top right (TR) and lower right (LR) gates for the 

SET coupling finger between had to be narrow enough that the conduction channel 

underneath the finger was completely pinched off by the voltages applied as part of 
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normal dot formation.  Prior to using the improved alignment procedure, we had 

attempted to couple the SET to the dot by first placing a finger over the dot as part of the 

dot lithographic step. As shown in Figure 4.5, the finger had an extended overlap region, 

that was used to couple to the SET.  

 

Figure 4.5 SEM image of dummy DQD device of earlier gate iteration in which coupling 

between the SET and the DQD employed a finger patterned with the dot gates.  The 

finger included an extended overlap region to address the challenge of achieving metallic 

contact between submicron regions deposited during separate dot and SET lithographic 

steps. 

This approach proved challenging as getting good metallic contact in the overlap region 

was not easy as SET junction size constraints severely limited the amount of RIE 

descumming that could be employed. 

The essence of Dr. Bal’s improved alignment procedure was to use physical 

movements of the SEM sample stage to achieve as much alignment as possible before 
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employing the NPGS matrix software routine.  The procedure used the NPGS alignment 

windows that are opened initially when the alignment program is run. By shifting the 

alignment overlay patterns, the stage shift required could be determined.  For stage shifts 

less than a micron, repeated attempts were usually required before a displacement of the 

appropriate amount was achieved.  The displacements were executed by entering the 

desired location into the SEM stage control program and using the software to execute 

the stage movement.  With the external manual stage adjustment knobs, stage movements 

on the order of ~ 1 micron were the practical limit of accuracy.  With patience and 

repeated effort, it was possible to mechanically align the alignment marks within 100 nm 

of their required position with the stage control program.  For the remaining fine 

alignment and any rotation required, the standard NPGS matrix alignment procedure was 

employed.  

4.3.2 Wire Bonding 

Successful wire bonding required that the bonder be in good working order.  Most 

important with respect to this was that the tip be fresh and properly adjusted.  For 

different sample materials, different operational parameters, as recorded in the bonding 

log book, were identified.  The most sensitive bonding step involved connecting to the 

center of the spiral chip inductor.  Given the limited size and the metallic thin film 

fracturing that occurs with a failed bond, usually only one or two bond attempts were 

possible.  If the second bond failed, an alternative method employing indium was used.   

The indium method used the mechanical action of the bonder  in effectively 

manipulating pieces of indium on the order 100 μm or less.  The preparation steps 
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involved in the indium procedure were: 1) inserting an old tip that had been dedicated for 

use with indium, 2) preparing a fresh piece of indium by cutting away with a clean x-acto 

knife the outer oxidized surface, 3) kneading the indium on a glass slide to make it 

pliable and sticky, and 4) attaching an inverted x-acto blade for indium manipulation in 

the bonder microscope’s field of view.  To attach a dangling failed wire bond, I would 

first use the inverted x-acto blade and the bonder indium tip to isolate a piece of indium ~ 

¼ the size of the central inductor bonding pad.  Next I would attach this piece to the 

central pad by repeatedly dabbing it on the surface.  This would slowly build of remnants 

of indium on the surface which at some point would be adequate so that the indium blob 

would stick to the surface.  It was important for the success of this step that the indium be 

barely attached to tip to facilitate its transition to the sample surface.  I would then use the 

bonder tip to gently press the dangling failed bond into the indium blob.  Once the wire 

was stuck to the surface, I would use the bonder tip to gently bring in another indium 

piece to sandwich the wire.  The final step required care in that if the indium was too 

attached to the tip it could end up pulling off the first piece and the wire.  Gentle dabbing 

with a barely attached piece of indium was again the preferred method. 

4.3.3 Sapphire Stripeline Grinding 

Maximizing the magnitude of the ac magnetic field placed a premium on bring the 

sample as close to the center conductor of the stripeline as possible.  As shown in Figure 

4.6(a), fabrication limitations meant that outer edge in the sample notch of the stripelines 

that we received from the contracted manufacturer were rough and ~ 130 μm away from 

the edge of the center conductor.  To address this, we developed a technique to 
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controllably remove material that produced a smooth edge that was a few microns from 

the center conductor.  The stripelines after processing are shown in Figure 4.6(b).   

 

Figure 4.6 (a) Optical image of the details of the outer edge of the electrically narrow 

notch cut in the stripeline to allow the samples to be brought in close proximity to the 

central conductor.  Given fabrication limitations by the contracted manufacturer, the 

stripelines received had a rough outer edge that was ~ 130 μm from the central conductor.  

(b) Optical image of a stripeline after a grinding procedure was used to smooth the notch 

edge and bring the outer edge within a few microns of the center conductor.  

The overall set-up used in the procedure is shown in Figure 4.7.  The set-up was 

based on the modification of a South Bay Technology diamond wheel saw.  In particular  

 

Figure 4.7 Set-up used to grind excess sapphire material from the sample notch in ESR 

stripelines.  The set-up includes a grinding wheel specifically machined to have a 

thickness just under the notch width.  The two stripelines halves are securely mounted in 
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a holder.  In operation, the spinning grinding wheel’s lower edge dips into 7 μm diamond 

slurry. 

the thin diamond saw was replaced with a grinding disk that was machined to have a 

thickness a few hundred microns thinner than the stripeline notch.  The lower edge of the 

grinding wheel sat in a 7 μm diamond slurry so that when spinning the grinding interface 

between the stripeline and the wheel was constantly refreshed with slurry.  Two stripeline 

halves were mated and securely mounted in the holder.  Figure 4.8 shows one of the  

 

Figure 4.8 The stripeline holder with one stripeline half.  For grinding, the second 

stripline half is carefully mated and secured with an outer tissue buffer and a cover plate. 

stripeline halves in the holder before mating and being secured with a cover plate.  To 

protect the Au outer ground planes and provide some cushioning, clean room tissues were 

used as an outer barrier layer.  The position of the stripeline holder could be adjusted up 

and down the holder balance arm to ensure that grinding commenced in the middle of the 

stripeline; that is symmetrically between the Au ground planes.  The grinding pressure 

could be finely tuned with a screw adjustable counter balance. 
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Once mated, it was not possible to see the central conductor.  Therefore, before 

joining the halves, optical measurements were used to determine the amount of material 

to be removed.  A small scratch was then made in the outer Au ground plane as a 

reference mark and the amount of material removed determined with respect to this mark.  

During grinding the stripeline holder was periodically removed from the grinding 

apparatus and measurements with the optical microscope were performed.  Because 

precisely remating the stripeline halves was a time consuming process, optical inspection 

of the sapphire edge relative to the central conductor was only done to carefully control 

the removal of the final 5 – 10 μm of material.  The South Bay Technology slurry had a 

suspension of diamond particles with a maximum diameter on the order of 7 um.  As can 

be seen in Figure 4.6(b), this resulted in an unavoidable surface roughness on the order of 

a few microns.  Grinding with a slurry having a finer suspension was not found to be 

effective as the grinding rate varied considerably.  This made it difficult to properly 

terminate grinding within a few microns of the central conductor as grinding time was 

necessarily used as a metric for the amount of material to be removed.  

4.3.4 Aligning the Sample 

To get the maximum ac magnetic field at the sample it was important to precisely 

align the center of the stripeline with the sample.  This alignment included both vertical 

and lateral alignment.  The lateral alignment was achieved via mechanical adjustment 

relative to reference marks and the vertical alignment was achieved via grinding. 

The stripeline holder was secured to the sample tail with two fine screw adjustable 

non-magnetic stages capable of submicron displacement.  One stage provided for vertical 
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adjustment of the stripeline perpendicular to the sample surface and the other provided 

for lateral adjustment parallel to the sample surface.  The objective of the lateral 

adjustment was to place the center conductor directly over the dot.  The first step in this 

involved lithographically patterning reference marks symmetrically on opposite sides of 

the dot at a distance where the outer edges of the stripeline should line up.  These 

reference marks are the short vertical Au lines in the middle of Figure 4.9.  Once the 

stripeline was in place over the sample, the lateral stage was used to move the sample 

until the outer edges of the stripeline matched the reference marks.   

 

Figure 4.9 Optical image of the central portion of an rf-QPC sample showing the leads to 

the DQD device, a lateral alignment pick-up loop, alignment hash marks, and the on-chip 

spiral loop inductor. 

As the sample mount set-up required that the lateral alignment with the Meiji optical 

microscope be done at oblique angle, determining a correspondence between the outer 
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stripeline edge and the reference mark proved challenging.  To address this, later lateral 

alignment patterns had a series of marks.  Symmetrically aligning these marks with their 

reflections on the sample surface ultimately provided the most accurate means of laterally 

aligning the sample.  Also as shown in Figure 4.9, an initial method contemplated for use 

in the lateral alignment of the stripeline was the use of an rf pick-up loop.  This method 

was not ultimately employed as it was determined that optical alignment could achieve 

the desired accuracy and removing the pick-up loop simplified the lithography and the rf 

connections to the sample. 

As described in the previous Section 4.3.3, it was necessary to remove sapphire 

from the sample notch to bring the central conductor as close to the edge of the sapphire 

as possible.  It was determined that this grinding could also be used to achieve vertical 

alignment.  In as shown in the Figure 4.6(b), the natural rounding of the outer edges of 

the grinding wheel meant that corners of the notch were a few microns further from the 

central conductor then the middle region.  With this difference in separation, the process 

of vertical alignment simply involved lowering the stripeline until the outer edge of the 

notch made contact with the sample surface.  The gap provided by the additional grinding 

of the central portion ensured that the stripeline did not make direct physical contact with 

the fragile central device gates themselves. 

This process of direct physical contact for vertical alignment was quick and clean 

and preferable to initial procedures that were based on creating a protective barrier 

between the sample and the stripeline with an optically hardened substance such as SU-8, 

an epoxy-based negative photoresist.  With the SU-8 approach, the stripeline was lowered 
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until it was in contact with the sample.  There were numerous problems with the SU-8 

approach.  First it introduced an additional step in an already length fabrication process. 

Second, it involved direct physical contact with the sample which although separated by 

the SU-8 still had the potential to damage the fragile fine device structures.  Third, the 

SU-8 did not always adhere completely to the sample leading to the loss of some devices 

at the last fabrication stage.  Fourth, in the non-hardened regions after lift-off, the SU-8 

still left a residue that made bonding difficult.  Given its numerous problems, the use of 

SU-8 was abandoned after the conceptualization and development of the grinding 

approach. 
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5 Summary and Future Directions 

Once demonstrated, our ESR system with an integrated fast charge detector will 

be a powerful tool for manipulating and exploring electron charge and spin dynamics.  

With the μs time resolution of our rf-SET, there are a number of phenomena that it will 

be possible to investigate.  Along with our collaborators at the University of Wisconsin, 

significant progress has been made in developing material and techniques to produce 

DQDs in strained SiGe with a high yield. With the faster gating times τπ enabled by the 

higher g factor and the longer decoherence times T2 due to the absence of a nuclear spin 

bath, a possible future research direction is the use of SiGe DQDs in the ESR set-up. 

With respect to the piezoelectrically mediated shot noise feedback loop discussed 

in Chapter 2, a first relatively straight-forward immediate extension of the work would 

include an effort to improve the response of the system by increasing its Q.  As attention 

was not directed towards optimizing this during the experiment, significant advances 

might be readily attainable.  For all of the devices measured as described in Section 4.3, 

the samples were attached to a rigid measurement platform with rubber cement applied to 

one side.  Suspending the crystal sample by some mechanism would be an interesting and 

easy modification.  In addition, the epitaxial growth of the heterostructure leaves a 

remnant layer of indium on the GaAs substrate. This layer provides an ill-defined 

amorphous component to the otherwise highly crystalline structure of the sample.  Its 

removal can be readily achieved with a standard bromide etch which should improve the 

resonant properties of the sample.  In general, improvements in the mechanical Q are 

likely to make backaction effects more pronounced and easier to detect, as was the case 

for nanotube resonators  [73–76].  In addition the increased spectral resolution provided 
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by a higher Q should allow us to explore finer details in the signal such as any harmonic 

components.   

Another interesting and relatively straight-forward extension of the rf-QPC work 

would be the inclusion of an on-chip matching network as was done for the rf-QPC ESR 

samples and for the low dissipation rf-SET work done in the lab  [35].  The primary 

benefits of a superconducting on-chip matching network are better impedance matching 

and the removal of signal loss mechanisms.  With these techniques, two specific issues 

that would be interesting to further investigate are the details of the Fano factor 

measurements and the nature of the coupling between the rf-QPC and the mechanical 

resonator.  With respect to the Fano factor measurements as can be seen in Figure 2.15, 

there are regions where the noise is strongly sub-Poissonian.  It would be interesting to 

more precisely verify these measurements as sub-Poissonian noise is a quantum 

mechanical rather than a classic phenomenon.  In addition measurements in the regime 

where the shot noise is suppressed would allow the exploration of a rf-QPC relative to the 

quantum limit  [77–79].  With respect to the coupling between the rf-QPC and the 

mechanical resonator, this interaction as discussed above, is via the bias voltage.  As 

such, the nature of the backaction is qualitatively different from most other systems.  As 

mentioned in Section 2.4,  L.L. Benatov and M.P. Blencowe  [47]  have shown it is 

possible to recast the bias electro-mechanical coupling to a variation in barrier height via 

a polaron transformation.  The difference is that the coupling is now via the crystal’s 

momentum and not its position.  With an on-chip matching network and other techniques 

to reduce losses, our results should be more efficient and better calibrated and allow us to 

further explore the nature of this interesting backaction coupling. 
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Additional rf-QPC measurements, such as those employing micron or sub-micron 

devices, would also be of interest in accessing even higher frequency regimes.  However, 

these experiments would be much more involved than those suggested above and would 

be most appropriate after the completion of the work already described.   
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6 Appendix 

6.1 Calculation of Photon Assisted Shot Noise 

Here we give a more in-depth discussion of the theoretical curves show in Figure 

2.8.  The plotted curves are derived from an expression for photon-assisted shot noise 

0( , )IS    at a frequency   due to an ac drive at a frequency 0  

2 2 0
0 0

4
2

( , ) (1 ) ( ) ( )cothI n n l
B

n l

le
h k T

S T T l J
 

    




   
    

where QPC
0rf

2 /eV  , QPC
rf

V  is the rms amplitude of the ac bias voltage across the 

QPC, and ( )lJ x  is a Bessel function of the first kind.  This expression can be derived 

from a more general expression for the shot noise given by Pedersen and Büttiker  [44]  

under the assumption that the transmission coefficients nT  are independent of energy and 

assuming zero dc bias across the QPC.  This form is equivalent to that for the zero 

frequency photon-assisted shot noise at non-zero dc bias dcV  given elsewhere  [45]  with 

the substitution of   for dc.eV  

To make a comparison between this expression and our experimental results, we 

first identify the rms amplitude of the voltage across the QPC as QPC

rf in 02V Q P Z .   We 

take the electron temperature to be 85 mK (the results are not very sensitive to this 

parameter).   For large values of the argument   of the Bessel function (in our case 

99   for Pin = -88 dBm) the series converges for a number of terms on the order of 2  
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and can easily be summed numerically.  We note that the 0l   term in the series 

corresponds to thermal noise of electron hole pairs rather than partition noise, but it is 

negligible for large .   While the shot noise 0( , )IS    predicted by theory is frequency-

dependent, its variation with frequency is very weak (less than 0.1% over the range of 

frequencies in our measurement) and cannot explain our data.  We can, however, 

compare the integrated shot noise predicted by theory with the measured integrated 

excess noise .E
n   This latter quantity is calculated from the raw noise spectra by 

integrating the noise power for frequencies in the range 0 10kHzf   to 0 4.81MHzf 

once with and once without rf power applied and taking the difference of the two 

measurements.  We checked the major visible features in nP  (e.g., the noise peak at

0 580kHzf  ) for scaling as 1/2
inP  before including them in the calculation of .E

n   It was 

not necessary to exclude any features from calculation of 
E

n  for the data presented in 

Figure 2.7 and Figure 2.8.  In the rf data presented, both input power and measured noise 

power are referred to the input of the HEMT amplifier.  The resolution bandwidth (RBW) 

for all noise spectra is 10 kHz. 

To make a comparison with theory, we first convert the theoretical expression for 

shot noise at the QPC to noise power at the input to the HEMT amplifier.  Following 

Korotkov and Paalanen  [80], we take the voltage noise outside the resonant circuit to be 

given by 0 0( , ) (2 / ) ( , )pV IS L C S     where we have assumed that the temporal 

fluctuations of the shot noise occur slowly in comparison to the oscillations of the carrier 

wave.   Rather than integrate over the measurement bandwidth, we make use of the fact 
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that 
0( , )IS    varies only weakly with frequency, and simply evaluate it at 

0
1MHzf   

and multiply by the measurement bandwidth BW.  Finally, we convert to noise power to 

obtain a theoretical expression for the integrated excess noise 

0 0,th
(2 / ) ( , )BWE

p In
L C Z S    that we then use to produce the dashed curves in Figure 

2.8. 

Agreement is excellent, considering the considerable uncertainties associated with 

our estimates of the rf voltage across the QPC and the noise voltage at the HEMT 

amplifier due to the shot noise.  These uncertainties arise primarily because of losses in 

the matching network, which ensure that our estimates for QPC

rfV  and 

0 0( , ) (2 / ) ( , )pV IS L C S     are both upper bounds.  While the inductor in our 

matching network is superconducting, the bond pads and wires are normal metal. To 

account for the losses due to normal metal components and the ohmic contacts, and the 

imperfect impedance matching of our network, we introduce a factor K that characterizes 

the fraction of available power from the QPC that reaches the measurement circuitry; we 

can then write 0 QPC,th
( ( , ) / )BWE

In
K S G  .  The 3.9 dB reduction used to fit our 

theory to experiment in Figure 2.8 corresponds to 0.16K  .    Improved performance and  

noise sensitivity could be achieved by use of a fully superconducting on-chip matching 

network for which impedance matching would be better and losses would be negligible  

[35].  Using the above notation, we can relate the measured excess noise power E
nP to the 

voltage and current spectral densities  and SV IS  by means of

RBW RBW /E
n V IQPC QPCP G KS KS G   leading to an expression

meas / RBWE
nI QPCS G P K for the measured spectral density of current noise in terms of 
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the measured excess noise.  This expression is used to calculate the Fano factor presented 

in the main text in Figure 2.15. 

6.2 Resonant Mode Calculation: Displacement, Strain, and Polarization Fields 

6.2.1 Resonant Modes and Displacement Vectors 

This section provides details on the calculation of the resonant modes and their 

corresponding resonant frequencies discussed above in Section 2.6.  In general our 

analysis follows Nishiguchi, et al.  [55]  and implements the techniques discussed in 

Visscher, et al  [54], both of whom start from the variational approach that Demarist  

[81], [82]  applied to the problem of an anisotropic elastic body.   

We begin by applying Hamilton’s principle and form the Lagrangian with its 

kinetic and potential energy terms  

 
2

V

1
dV

2 2
i i ijkl i j k lL u u c u u




 
    

 
  6.1 

where   is the mass density,  is the angular frequency,  ui is the i
th

 components of the 

displacement vector u, and ijklc is the elastic stiffness constant analogous to a microscopic 

spring constant.  Throughout repeated indices imply summation.  A shift in i i iu u u 

generates a variation L in the Lagrangian 

 
2

S
V

 dV- dS
2

i j ji i j ji iL u u n u


     
 

   
 
   6.2 

where jn is a unit vector normal to the surface S and ij ijkl k lc u   is the stress tensor.  
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The boundary conditions for our freestanding rectangular GaAs parallelepiped is 

that the stress field vanishes on the surface S, 

 S| 0.ij jn   6.3 

Applying these boundary conditions 6.3 and assuming that the Lagrangian has a 

minimum with respect to ui yields elastic wave equation 

 
2 0.i l liu    6.4 

To solve, we expand with the displacement vectors u with a complete set of basis 

functions   as .i iu     This yields the relation 

 2 0.i l ijkl i kc            6.5 

We now multiply by '
 and integrate over the volume of the GaAs crystal V=W L H 

to achieve the generalized eigenvalue problem 

 
2

' 'dv dv 0.i l ijkl j kc                 6.6 

This can be rewritten in matrix form 

      2 E 0       6.7 

where the matrix elements ' 'i iE   and ' 'i i  are given by 

 ' ' ' ' dVi i iiE
V

   


   , and 6.8 
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 ' '

' ' ' 'dV.
iji j

i i j j

c

V
          6.9 

As suggested by Nishiguchi et al.  [55], an effective set of basis functions for 

calculational purposes is  

 
2 2 2

.
L W H

l m n
x y z



     
       

     
 6.10 

where the length L in x, the width W in y, and height H in z of the parallelepiped are as 

discussed in the main text, for example as shown in Figure 2.1.  This choice of basis 

functions is convenient for several reasons.  First,   is completely specified by the triplet 

of numbers {l,m,n}.  Second the form matches the symmetry of the problem making the 

integrals in ' 'i iE  and ' 'i i  straight forward to calculate.  Lastly, as is shown below, the 

parity of the components can be used to greatly simplify the problem, and the with the 

form 6.10, the parity of the basis functions is easily determined and is specified by the 

triplet ( 1) , ( 1) , ( 1) .l m n      

 In calculating the matrix elements ' 'i i  and ' 'i iE  integrals of the following form 

are encountered 

 

1 1 1L W H

2 2 2
L W H

2 2 2

1 1 2 2 2
dV dV

V V L W H

1 1 L 2 1 W 2 1 L 2
= | | | .

V ( 1) 2 L ( 1) 2 W ( 1) 2 H

l m n

l m n

x y z

x y z

l m n



  

  

     
       

     

     
      

       

 
 6.11 
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This simplifies to  

1 1 1 1 1 1

, , ,

1 1 (LWH 8)
dV [1 ( 1) ][1 ( 1) ][1 ( 1) ]

V V ( 1)( 1)( 1)

( , , )

1
.

( 1)( 1)( 1)

l l m m n n

l even m even n even

l m n

F l m n

l m n



  

            
  




  



 6.12 

 The calculation of the matrix elements is greatly simplified by the cubic 

symmetry of GaAs which reduces the number of independent stiffness constants ijklc from 

the general case of 21 for a generic medium to four.  Using abbreviated subscripts given 

the simplification, the stiffness tensor is 

 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

c c c

c c c

c

c

c

 
 
 
 
 
 
 
  
 

 6.13 

where 

 

11 22 33

12 21 13 31 23 32

44 55 66

xxxx

xxyy

xyxy

c c c c

c c c c c c c

c c c c

  

     

  

 6.14 

0ijklc  for all other combinations 

with 
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1

2

3
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6 , .

xx
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zz

yz zy

xz zx

xy yx
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







 6.15 

 For arbitrary ',  there are nine matrix elements as ',i i each run over , , .x y z   As 

an example, consider the first matrix element for ',i i x  

 

' '

'

'

' '

' ', , , ,

dV
V

= dV.
V

xjxj

x x
j j

xjxj

j x y z j x y z j j

c

x x

c

x x

 

 

 

 


 

 



 



  

 6.16 

Given 6.13 and 6.14 the only non-zero terms in the sum are  

 
' ' '

'

11 44 44dV+ dV+ dV.
V V Vx x

c c c

x x y y z z

     

 

    
 

         6.17 

Considering the first term by way of example and using 6.12  

 

'

'

' ' '

11 11

2 1 1 '

'11

2 2 2 2 2 2

L W H L W H
dV dV

V V
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 
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 
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'
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2
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V L

4
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c
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 

 
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 

   





6.18 
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 The total matrix element is then 

 

 

 

 

'

'
' ' '11

2

'
' ' '44

2

'
' ' '44

2

4
= 2, ,

L

4
, 2, .

W

4
, , 2

H

x x

c ll
F l l m m n n
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c nn
F l l m m n n

 
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    

    

 6.19 

The other matrix elements 
' 'i iE   and 

' 'i i  are calculated in a similar manner.  

 Now as we consider calculating the eigenvalues and eigenvectors of 6.7, the high 

degree of symmetry in GaAs great simplifies the problem.  In particular a cubic system 

such as GaAs has inversion symmetry along all three axis; that is, 

, , .x x y y z z     As Demarist showed  [81], [82] and as discussed by Ohno  

[53], this means that the matrix can be split into 8 sub-matrices that can be solved 

separately.  Each of these sub-matrices corresponds to an independent set of modes of 

vibration.  In addition, each set of modes or sub-matrix only connects displacement 

vectors of particular parities.  For example,    : O,E,E , : E,O,E ,x yu u  and  : E,E,Ozu

only appear with each other where E and O represent even and odd parity, respectively.  

This means that the sets of modes can be classified according to the parity of the 

displacement vectors.  We follow the classification scheme of Ohno  [53]  based on this 

fact. 
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y y y y
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u u u u

u u u u
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Ox n Oy n Oz n Ev n

x y z x y z x y z x y z

u u u u

u u u u

u u u u

   

   
 6.20 

Table 6-1  Classification of sets of vibrational modes of a rectangular parallelepiped of 

an orthorhombic crystal according based on the parity (Even/Odd) of the displacements 

, ,x y zu u u according to Ohno  [53]. 

The total number of basis vectors is limited by constraining the total power of 

each basis function according to  

 .l m n N    6.21 

The total order R of the E and matrices is determined by the number of basis functions 

according to the condition  

 
   1 2 3

3 .
6

N N N
R

  
  6.22 

Equation 6.22 is the number of ways that 6.21 can be realized for non-negative integers 

with an additional factor accounting for each of the three dimensions.  As 3,R N the 

problem quickly become computationally intensive as a function of N.  We determined 
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that limiting the total power of the exponent to seven, i.e., 7,N  provided solutions that 

were highly accurate while also computationally reasonable. 

The basis functions that are used to solve each of the eight reduced eigenvalue 

equations 6.7 for each sub-matrix E and   are selected in accordance with the 

displacement parity classification system shown in Table 6-1.  The generation of the basis 

functions is facilitated by a generation triplet  , , .p q r  The condition 6.21 that 7N   

requires that the generation triplets satisfy either  

 2p q r    6.23 

or 

 3p q r    6.24 

depending on the parity of the basis function components.  The set of 10 generation 

triplets for 6.23 is 

 

 

     

           

0,0,0

1,0,0 , 0,1,0 , 0,0,1

2,0,0 , 0,2,0 , 0,0,2 , 1,1,0 , 1,0,1 , 0,1,1

 6.25 

and the set of 20 generation triplets for 6.24 includes the set 6.25 with the addition of 

 

     

           

 

3,0,0 , 0,3,0 , 0,0,3

2,1,0 , 2,0,1 , 0,2,1 , 1,2,0 , 1,0,2 , 0,1,2

1,1,1 .

 6.26 
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 By way of example, we consider the Ey -n set of flexural modes where the lowest 

order Ey-1 mode is the one we observed being excited as part of the piezoelectric 

feedback.  The basis vectors used to solve 6.7 are those having the proper displacement 

parity given the constraint in total exponent power.  For example, the x-displacement 

parity is  O,O,Exu which corresponds to the set of basis functions 

 

2 1 2 1 2

(2 1,2 1,2 )

2 2 2

L W H

p q r

p q r

x y z


 

  

     
       

     
 6.27 

where {p,q,r} are selected from the set 6.25 thereby ensuring that  2 2 7.p q r      

The set of basis functions for the y and z displacements are determined in a similar 

manner with the generation triplets for uy coming from 6.25 and 6.26  as the even parity 

for each component corresponds to the condition  2 7.p q r    

This total set of basis functions is used to generate the matrix elements ' 'i iE  and 

' 'i i  in accordance with 6.8 and 6.9.  We used the functions Eigenvalue and Eigenvector 

in Mathematica to solve for the eigenvalues 
2  and eigenvectors  .   Using the 

eigenvectors, the displacement vectors were generated in the following manner, again 

using the set of Ey-n flexural modes as an example, 

 

2 1 2 1 22( ) 2 7

1,2 1,2 1,2

, ,

2 2 2

L W H

p q rp q r

x p q r

p q r

x y z
u 

    

 

     
      

     
  6.28 

where {p,q,r} are selected from the set 6.25.  The y and z components are generated in a 

similar manner, 
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2 2 22( ) 7

2,2 ,2 ,2

, ,

2 2 2

L W H

p q rp q r

y p q r

p q r

x y z
u 

  
     

      
     

  6.29 

where {p,q,r} are selected from the sets 6.25 and 6.26 and  

 

2 2 1 2 12( ) 2 7

3,2 ,2 1,2 1

, ,

2 2 2

L W H

p q rp q r

z p q r

p q r

x y z
u 

    

 

     
      

     
  6.30 

where {p,q,r} are selected from the set 6.25.   For each eigenvector  , there is a 

corresponding n
th

 vibrational mode given by 6.28, 6.29, and 6.30.  The number of 

particular modes n is determined by the number of basis functions, which for the EY-n 

mode for 7N  is 10+20+10 = 40 where the value of either 10 or 20 corresponds to the 

generation triplets coming from either 6.25 or 6.25 and 6.26 for a particular component. 

6.2.2 Strain and Polarization Fields 

 The plots of the polarization field P shown in the main body are based on 

calculations of the strain field S which are in turn based on a determination of the 

displacement vectors as detailed above.  As discussed in Section 2.6, mobile electrons in 

the 2DEG screen the polarization charge resulting in no net electric field E in the high 

conductance regions.  This means that the electric displacement field D and the 

polarization field P are equal, both of which can be related to the strain field S, 
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x yz yz xy
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S
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 
 
  
  
  
     
 
  

  

P = D = e S =

 6.31 

where 
4xe are piezoelectric stress constants defined by 

 4 4 44

E

x xe d c  6.32 

where d is the piezoelectric strain matrix and 
Ec are elastic stiffness constants at constant 

electric field.  

The strain matrix elements are defined by  

 

 
1

.
2

ji
ij

j i

uu
S

x x

 
     

 6.33 

As discussed above in Section 2.6, the Ey-1 flexural mode we observe results in a 

polarization field xP along the direction of electronic transport.  We calculate this field 

based on the yzS strain matrix element in the following manner where we use the 

displacements uy  6.29 and uz 6.30 
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22
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1
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pqr
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


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  

     
      

     

      
     
     





 6.34 

Using these strain field calculations, we were able to determine the geometry of 

the corresponding vibrational mode and its polarization field.  This geometric analysis in 

turn was central to the development of our understanding of the piezoelectric feedback 

loop.  In particular an analysis of the geometry of the mode whose frequency we 

observed showed that it could couple not only to mechanical motion but also to charge 

transport.  This analysis had two components.  First, as discussed in Section 2.6 and 

shown in Figure 2.13 andFigure 2.14, the polarization field zP had strong dipolar 

components under the ohmic contacts.  This allowed charge fluctuations to 

piezoelectrically drive mechanical motion.  Second, the polarization field in the center of 

the sample was aligned along the axis of the QPC.  This allowed mechanical vibrational 

energy to couple to charge transport through an ac bias.   An analysis of the geometry of 

the mode therefore showed that electrical energy could be transferred to mechanical 

energy and back again, the two halves of a piezoelectricly mediated feedback loop.  

6.3 2DEG Material and ESR Samples Summary 

Source Identifier Electron 

Sheet 

Density ns 

(cm
-2

) 

2DEG 

Depth 

(nm) 

Mobility μ 

(cm
2
V

-1
S

-1
) 

Spacer 

Thickness 

(nm)  

% Al in 

Spacer 

Pfeiffer 3-30 05.2 111.3 10  100 63 10    
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Umansky U-6-98 113.2 10  57 61.4 10  25 36 

Umansky U-7-159 112 10  74 63 10  42 36 

Umansky U-8-271 113.2 10  60 63 10  30 ~50 

Table 6-2 Summary of the properties of the GaAs/AlGaAs materials used in the ESR 

experiment. 

 

Sample 

Number 

Measurement 

Start Date 

Material Charge 

Sensor 

Results/Notes 

1 3/3/09 U-8-271 QPC Electric discharge from 

stripeline or pulse gates or 

complications with SU8 

processing destroyed sample. 

2 5/29/09 U-8-271 SET Modify SU8 procedures. 

Electric discharge from 

stripeline or pulse gates or 

complications with SU8 

processing destroyed sample. 

3 6/26/09 U-8-271 QPC Eliminate SU8 processing step. 

Electric discharge from 

stripeline or pulse gates 

destroyed sample. 

4 7/12/09 U-8-271 QPC Modify rf set-up including 50 

ohm terminators on top of pulse 

gates. Two runs with extensive 

attempts to form stable dot.  

Appears local defect causes 

asymmetric pinch-off 

preventing simultaneous 

formation of dot and proper 

operation of QPC charge 

sensor. 

5 10/5/09 U-98 SET SET and ohmics have high 

resistance. 

6 10/15/09 U-7-159 QPC Device gates failed.  Failure 

mechanism unclear as post run 

optical analysis provided 

inconclusive feedback. 

7 12/12/09 U-8-271 QPC Two runs but high resistance 
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ohmics prevents effective dot 

and QPC measurements. 

8 1/20/10 U-7-159 QPC Three runs but high resistance 

ohmics prevents effective dot 

and QPC measurements. 

9 2/19/10 U-8-271 QPC Two runs.  Not adequate range 

for source QPC to form 

effective dots for measurement. 

Suspect nanomagnet may 

complicate QPC formation. 

10 3/26/10 U-98 SET Unstable dot and not possible to 

modulate SET. 

11 5/14/10 U-98 SET Able to form nice stable single 

and double dot.  No SET 

coupling to dot or SET gate. 

12 6/25/10 U-98 QPC Add gate to ground 

nanomagnet. Able to form nice 

stable single and double dots.  

QPC current too noisy for 

effective rf data. 

13 10/19/10 U-98 QPC Four runs. IVC leak. Numerous 

attempts to resolve leak.  For 

fourth run, not possible to form 

dots. Possible problem with 

gates. 

14 2/18/11 U-98 QPC First run terminated by IVC 

leak.  For second and third run, 

QPC current too noisy. 

15 4/23/11 U-98 QPC Additional etch to promote 

QPC stability.  IVC leak 

terminated run. 

Table 6-3 Summary of the fifteen QPC and SET samples run as part of the ESR 

experiment. 
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