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Abstract

Si/SiGe quantum dots (QDs) are promising candidates for spin-based quantum bits

(qubits) as a result of the reduced spin-orbit coupling as well as the Si isotopes with

zero nuclear spin. Meanwhile, qubit readout is a challenge related to semiconductor-

based quantum computation. A superconducting single-electron transistor (SET),

when operating in the radio-frequency (rf) regime, has a combination of high charge

sensitivity and low back-action and can potentially become an ideal charge sensor for

the QDs.

This thesis describes the development of superconducting SET charge sensors for

Si/SiGe QDs. Using rf-SETs we have detected real-time electron tunneling events on

the order of 10 microseconds in a single QD and mapped out the stability diagram of a

double QD, showing spin blockade and bias triangles due to excited-state transitions.

In Addition, Kondo effects that are significantly different from the standard spin 1/2

model have been observed and investigated in both perpendicular and in-plane mag-

netic fields, indicating the interplay between the spin and valley degrees of freedom

in Si.
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Chapter 1

Introduction

1.1 Quantum computing

The pioneering ideas in quantum computing date back to the 1980s. In 1982 Richard

Feynman suggested that building a computer based on the principles of quantum me-

chanics would eliminate the intrinsic difficulties in simulating quantum mechanical

systems with a classical computer [1]. In 1985 David Deutsch started to consider

computing devices based upon the principles of quantum mechanics. He also demon-

strated that quantum computers have the power to solve certain computational prob-

lems inaccessible to a classical computer [2]. This idea was developed further in the

1990s. Peter Shor demonstrated that a quantum computer has the ability to solve two

problems of great importance, namely the problem of finding the prime factors of an

integer, and the discrete logarithm problem [3]. Lov Grover proved that a quantum

computer can dramatically speed up the process of searching through an unsorted

database [4].
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1.1 Quantum computing

A classical bit can only occupy either ’0’ or ’1’ at any time, while a quantum

bit (qubit) can be the superposition of both states, x|0〉 + y|1〉, with probabilities

|x|2 and |y|2 for |0〉 and |1〉, respectively. An n-qubit system would therefore be

the superposition of 2n states, which enables a single operation to be performed on

multiple input combinations simultaneously.

Loss and DiVincenzo proposed an implementation of a universal set of gates for

quantum computing using the spin states of coupled single-electron quantum dots [5].

Qubits in semiconductors are promising for the scale-up of future quantum circuits. Si

in particular has long coherence time due to the existence of zero-nuclear spin isotopes.

Being the second most abundant material on earth, Si is a favorable economic choice.

Last but not least, the current semiconductor industry is largely based on Si. Most

of the available technology and engineering can potentially be transferred directly to

quantum circuits.

In quantum computation there are two important timescales generally referred

to as T1 and T2, in analogy to the spin-lattice relaxation time T1 and the spin-spin

relaxation time T2 in nuclear magnetic resonance (NMR) systems. In a qubit T1 is

the spin energy relaxation time, governing the mechanism by which the qubit returns

to equilibrium with the environment while T2 is the dephasing time after which the

phase information in the qubit is lost due to spin precession. In Ref. [6] the effects of

T1 and T2 are explained in terms of the transformation of the density matrix,

a b

b∗ 1− a

→
(a− a0)e−t/T1 + a0 be−t/T2

b∗e−t/T2 (a− a0)e−t/T1 + 1− a0

 . (1.1)

For t > T2, the phase information stored in the off-diagonal terms is erased.
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1.2 Si/SiGe heterostructures

Meanwhile, for t > T1 the energy relaxes to the thermal equilibrium characterized by

a0. Eventually the qubit collapses to the basis states of the environment,

a0 0

0 1− a0

 . (1.2)

In practice, instead of T2, it is usually the time-ensemble-averaged dephasing time T ∗2

that is measured.

1.2 Si/SiGe heterostructures

In recent years, considerable progress has been achieved on Si-based quantum dots

(QDs) [7, 8, 9, 10, 11, 12]. A prominent motivation is that the reduced spin-orbit

coupling as well as the zero nuclear spin in 28Si and 30Si, which together make up 95%

of the natural-abundance of silicon, give rise to unusually long electron spin coherence

times [13, 14]. On the other hand, as the more mature material in study of transport

in nanostructures, GaAs does not have isotopes without nuclear spin, and the presence

of nuclear spins eventually contributes to spin decoherence [15, 16]. These properties

make Si-based quantum devices, including Si/SiGe QDs, promising candidates for

spin-based qubits, which are a potential platform for quantum information processing

[17, 18]. Recent measurements have found the spin relaxation time T1 to be as long as

∼6 s at a field of 1.5 T for phosphorus donors in Si [19], and ∼3 s at a field of 1.85 T

in Si/SiGe QDs [20]. Lifetime of triplet states in a Si/SiGe double QD (DQD) have

been measured to be ∼10 ms in the absence of magnetic field and can reach 3 s at 1 T

[21]. In an undoped Si/SiGe DQD, a nuclear-induced dephasing time T ∗2 = 360 ns

3



1.2 Si/SiGe heterostructures

Table 1.1: Relaxation times in GaAs and Si/SiGe QDs

QD T1 T ∗2

GaAs 0.85 ms at 8 T, single spin [24] 10 ns, single spin [25]; 37 ns, S-T [26]

70 µs, singlet-triplet (S-T) [27] 200 µs, S-T with CPMG echo[23]

Si/SiGe 3 s at 1.85 T, single spin [20] 360 ns [22]

3 s at 1 T, S-T[21]

has been reported [22]. Table 1.1 is a brief summary of the measured T1 and T ∗2

in GaAs and Si/SiGe QDs. The most extraordinary result among them is probably

the dephasing time in GaAs qubit exceeding 200 µs with Carr-Purcell-Meiboom-Gill

(CPMG) echo sequence [23].

Although Si/SiGe QDs has many desirable features compared to GaAs/AlGaAs

QDs, significant challenges are present. The most crucial issue that needs to be re-

solved is the leakage current associated with smaller Schottky barriers. Defects in

the material are hard to avoid due to the strain that occurs in the growth of the het-

erostructure. The effective mass of Si, being almost 3 times larger than that in GaAs,

results in a smaller energy level spacing in the QD so the geometric dimensions of the

devices have to be smaller. The presence of a valley degeneracy further complicates

the matter, but can also lead to the observation of interesting physics.

The development of Si/SiGe heterostructure, which has enabled band structure

engineering in this materials system, has opened up the possibility of realizing silicon-

based qubits and allows new physics to be explored [28, 29, 30]. Compared to GaAs, in

which bandgap engineering was originally pioneered, Si/SiGe heterostructure devices

took much longer to develop due to the more demanding growth technology as well

4



1.2 Si/SiGe heterostructures

∆
∆

∆

Figure 1.1: Band structures for compressively strained Si1−xGex on relaxed Si and

tensile-strained Si on relaxed Si1−yGey

as issues related to strain. The near-perfect lattice match between GaAs and AlGsAs

results in high quality wafers. In contrast, the lattice constant of germanium is 4.2%

larger than that of silicon. Consider the case in which a thin Si1−xGex film is grown on

top of a Si1−yGey film. The top layer is compressively strained for x > y while tensile

strained for x < y. As shown in Fig. 1.1, to produce a quantum well with a large

enough discontinuity to confine electrons, a tensile-strained Si or Si1−xGex layer must

be grown on a relaxed Si1−yGey substrate, where x < y [31]. The tensile-strained

layer and the substrate have different conduction band minima. An electron gas is

formed at their interface as a result. The electrons are bound to the interface, free to

move in the plane parallel to the interface, hence the name ’two dimensional electron

gas’ (2DEG).

The Si/SiGe heterostructure wafers are provided by our collaborators at the Uni-

versity of Wisconsin, who have first observed Coulomb blockade in Si/SiGe [32] and

later performed charge sensing in a Si/SiGe double QD with a quantum point contact

5



1.2 Si/SiGe heterostructures

Si 1− x Ge x

x=0~0.3

relaxed, step graded

Strained Si, 2DEG

Si 0. 7Ge 0. 3

n-type dopant

Fermi energy

Strained Si

Figure 1.2: Schematic diagram of Si/SiGe heterostructure and bandgap structure

(QPC) charge sensor [33]. Fig. 1.2 illustrates the schematic of a Si/SiGe heterostruc-

ture and conduction band alignment.

The Si/SiGe heterostructure is grown using chemical vapor deposition (CVD). A

step-graded virtual substrate is grown on Si (001) that was miscut 2 degrees towards

(010). A 1 µm thick Si0.7Ge0.3 buffer layer is deposited next, followed by an 18 nm

Si well where the two-dimensional electron gas (2DEG) is located. A 22 nm intrinsic

layer, a 1 nm doped layer (∼ 10−19 cm−3 phosphorous), a second intrinsic alloy layer

of ∼ 50 to 76 nm, and finally a 9 nm Si cap layer are grown subsequently.

6



1.3 Fast charge read-out

1.3 Fast charge read-out

A challenging task related to semiconductor-based quantum computation is qubit

readout [17, 34]. The quantum point contact (QPC) is the most commonly used

readout device thanks to its simple fabrication process [35, 24, 25]. Silicon QDs

themselves have also been used as charge sensors [36]. However, unwanted dissipa-

tion in a QPC or QD is inevitable, since the charge carriers are normal electrons. A

superconducting single-electron transistor (SET), on the other hand, has carriers of

quasi-particles and Cooper pairs allowing for reduced dissipation and better sensitiv-

ity. Fast charge readout can be performed with the radio frequency SET (rf-SET)

[37], as has been demonstrated in GaAs-based QDs [38]. Excellent sensitivity (on the

order of 10−6 e/
√

Hz ) [38, 39] combined with low back-action [40] has been reported

for the rf-SET.

1.4 Structure of this thesis

This thesis comprises mainly two parts. The former is the effort to form control-

lable QDs in Si/SiGe and the study of their transport properties. The latter is to

incorporate SET charge sensors to perform both dc and rf charge readout of the QDs.

Chapter 1 is a brief overview of quantum computing as well as the motivation

for developing Si/SiGe QDs and the rf-SET charge sensors. Chapter 2 introduces

the fabrication process, with an emphasis on the low-leakage Schottky gates, and the

cryogenic refrigerators for low-temperature measurement. Chapter 3 presents the

experimental results of single QD measurements, demonstrating Coulomb blockade.

When performing transport measurement we observe interesting Kondo effect related

7



1.4 Structure of this thesis

to the valley degree of freedom unique to Si, which is discussed in Chapter 4. The

following four chapters focus on SET charge sensing. Chapter 5 introduces the

superconducting SET and the dc charge sensing of the QD is demonstrated. Chap-

ter 6 moves forward to the rf regime and explains in detail the method of rf-SET with

real-time charge sensing data. Chapter 7 presents experimental data and detailed

analysis of double QD (DQD) charge sensing with rf-SET. Spin blockade as well as

bias triangles due to transition through excited states are observed. To conclude, in

Chapter 7 the future direction will be indicated.
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Chapter 2

Device fabrication and cryogenics

2.1 Fabrication of Si/SiGe quantum dots with low-

leakage gates

Considering the complexity of the QD-SET system, it is essential to develop a reliable

fabrication process that guarantees a high yield of successful devices. The most

basic fabrication technique involves patterning with photolithography / electron beam

lithography, and the subsequent deposition of metals. Photolithography is used for

pattern features larger than a micron including the etch pattern, ohmic contacts and

photo gates. A layered Au/Sb/Au film is evaporated to form the ohmic contacts,

which typically yields a resistance of tens of kiloohms after annealing at 400◦C in a

gas mixture of H2 and He (20% H2). Pd is evaporated in an electron beam evaporator

to form the Schottky gates. Fig. 2.1 shows the device after the photolithography steps

are completed.

Leakage currents in Si/SiGe devices can become significant, preventing the forma-

9



2.1 Fabrication of Si/SiGe quantum dots with low-leakage gates

Figure 2.1: Optical micrograph of a device in Si/SiGe

tion of stable QDs. A combination of deep etch and oxide backfill is used to reduce

the leakage current. We use a CF4/O2 plasma in a reactive ion etcher (RIE) to re-

move the majority of the surface, leaving only the mesa where the QD is formed

and the ohmic-contact leads. We then immediately back-fill the etched area with

AlOx in an electron beam (e-beam) evaporator before resist removal, as illustrated

by Fig. 2.2. (If possible, atomic layer deposition (ALD) would be more desirable.)

The etch depth is typically 50 nm beyond the estimated depth of the 2DEG. After

an additional patterning step, layered AlOx/Ti/Pd is deposited to form the Schottky

gates in the e-beam evaporator. Before gate evaporation we return the sample to

the RIE and use CF4 (without O2) to remove the native oxide. Neither the sample

surface nor the AlOx backfill is damaged with this dry etch.

The QD is patterned subsequently with e-beam lithography. After the removal of

10



2.1 Fabrication of Si/SiGe quantum dots with low-leakage gates

mesa160 nm

180 nm

Pd 150 nmTi 2 nm

10 nm

2DEG

AlOx

AlOx

Figure 2.2: Sequence of gate fabrication steps

oxide with CF4, Pd is deposited directly on the mesa to form the dot gates, which

are extensions of the photolithographic Pd gates. Fig. 2.3 shows a scanning electron

micrograph of a completed QD on a mesa.

To detect the leakage, voltage is applied on each gate and any resulting current

is measured through an ohmic contact. Our gate fabrication techniques significantly

suppress leakage currents. The Pd gates show no signs of leakage within the sensitivity

of our measurement (∼picoampere) up to an applied voltage of −3 to −5 V, as shown

in Fig. 2.4 where curves of different colors correspond to different gates.
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2.1 Fabrication of Si/SiGe quantum dots with low-leakage gates

Figure 2.3: SEM image of a QD defined by Pd gates

-300

-200

-100

0

I L 
(p
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-4 -3 -2 -1 0

Vg (V)

Figure 2.4: Leakage currents vs. gate voltage for a device with low-leakage Schottky

gates
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2.2 Fabrication of Al single-electron transistor

MMA MAA
PMMA 950

Figure 2.5: Sequence of SET shadow evaporation

2.2 Fabrication of Al single-electron transistor

The Al SET is fabricated with shadow evaporation as illustrated in Fig. 2.5. The

substrate is first coated with copolymer and pre-exposed with UV light. After coating

with PMMA 950 and exposure with an electron beam, an undercut is formed. During

evaporation, the angle of the sample can be adjusted. Oxygen is introduced into the

chamber after the first layer of metal of about 30 nm is deposited, creating a thin layer

of oxide serving as the tunnel barrier. The sample is then tilted and another layer of

Al is deposited. The SET is positioned in the vicinity of a QD. The central island of

the SET is extended above the QD as shown in Fig. 2.6. The tunnel junctions have

a dimension of 50± 15 nm × 50± 15 nm.
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2.2 Fabrication of Al single-electron transistor

Figure 2.6: Electron scanning micrographs of QD-SET devices with different QD

designs
14



2.3 Cryogenic refrigerators

mesa

Al

AlOx

(a) (b)

Figure 2.7: Schematics of the mesa edge

The back filling of the mesa etch is critical not only for the Pd dot gates but also for

the Al SET. In some samples the surface of the oxide is below the mesa (Fig. 2.7(a)).

Subsequently the Al leads to the SET are in contact with the mesa edge. In this case,

the SET shows no signs of a high-impedance sub-gap region (Fig. 2.8(a)). We conclude

that the high gap currents are a result of the leakage current at the interface of Al and

the edge of the mesa (Fig. 2.7(a)). Apparently, the tolerance for leakage of an SET is

significantly smaller than that of Pd Schottky gates. To circumvent this problem, we

completely seal the edge of the mesa with oxide (Fig. 2.7(b)). In samples fabricated

following this procedure, the leakage is further reduced and the superconducting gap

of ∼1.5 mV is clearly visible in the SET I-V characteristics(Fig. 2.8(b)).

2.3 Cryogenic refrigerators

The 3He Refrigerator (Oxford HelioxAC-V) can cool the sample down to about 0.3 K

without using liquid He and is very convenient to operate. The system consists of

a pulse tube cryocooler (PTC), an external compressor and a insert with a sorption

pump and a 3He pot.

Initially the PTC is switched on to cool its 2nd stage to below 10 K. Meanwhile,

the sorption pump is cooled down simultaneously with the 2nd stage. We modify the
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2.3 Cryogenic refrigerators
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Figure 2.8: SET I-V curves for a mesa (a) not completely sealed; and (b) completely

sealed.

standard procedure and keep the heat switch closed at all time during this step to

ensure a thermal link between the 2nd stage and the sorption pump. The sorption

pump is connected to the 3He dump by keeping Valve 1 (V1) open and starts to pump

the 3He gas in the dump as well as any remaining 3He in the pot when it is cooled

down to below 20 K. The process is illustrated in Fig. 2.9(a).

When the 3He is completely adsorbed by the sorption pump, V1 is closed to isolate

the dump and the sorption pump. The heat switch is turned off to break the thermal

link between the 2nd stage and the sorption pump. As the sorption pump warms up

with the help of a heater the 3He gas is released into the pot, acting as a thermal link

between the 2nd stage and the pot to cool the insert down to about 3 K (Fig. 2.9(b)).

At this point the system is ready for 3He condensation. V1 is opened for a few

seconds so that the 3He gas expands into the empty dump, which provides further

cooling, allowing liquid to condense and collect at the bottom of the pot. After V1
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2.3 Cryogenic refrigerators

Dump
Sorption

pump

He pot3

V1

Heat switch

(a) (b)

PTC

2nd stage

Figure 2.9: Operating principles of 3He refrigerator.

Figure 2.10: The insert of 3He refrigerator.
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2.3 Cryogenic refrigerators
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Figure 2.11: Operating principles of a dilution refrigerator.

is closed, the sorption pump heater is turned off and the heat switch is turned on so

that the sorption pump can be cooled down to below 10 K by the 2nd stage, pumping

the 3He gas from the pot and cooling the insert down to the base temperature of

about 0.3 K. The actual cryostat is shown in Fig. 2.10.

To reach temperatures even lower than 0.3 K, a dilution refrigerator will need to

be used. Experiments in this thesis have utilized an Oxford Kelvinox Compact as

well as an Kelvinox 400, both with a similar principle of operation. Below a critical

temperature, the mixture of 3He and 4He separates into two phases: a concentrated

phase rich in 3He and a dilute phase rich in 4He. The enthalpy of 3He is different

in the two phases, therefore cooling can be obtained by evaporating 3He from the

concentrated phase into the dilute phase.
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2.3 Cryogenic refrigerators

Figure 2.12: The insert of the Kelvinox Compact

Figure 2.13: The top panel of the Kelvinox 400
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2.3 Cryogenic refrigerators

When the dilution refrigerator operates continuously, the system is kept in a

dynamic equilibrium, in which the 3He is pumped from the dilute phase in the still and

returned into the concentrated phase, as shown in Fig. 2.11. The 1K pot draws liquid

4He from the main bath and is kept at about 1.5 K with constant pumping, allowing

the gas mixture to condense into the dilution unit. Kelvinox Compact (Fig. 2.12) has

a base temperature of about 60 mK and Kelvinox 400 (Fig. 2.13) can cool down to

below 20 mK.
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Chapter 3

Si/SiGe single quantum dots:

transport measurement

3.1 Single-electron behavior

A QD is a nanostructure in which confinement is imposed, resulting in a quantization

of both the energy spectrum and the number of electrons. In a 2DEG the electrons

are confined to move in the x−y plane. Additional confinement is imposed by the Pd

Schottky gates. Let us first consider a single quantum dot neglecting the quantization

of energy levels. Fig. 3.1 is the equivalent circuit of such a system. Following the

discussion in Ref. [41], from Kirchhoff’s law, the voltages across junctions 1 and 2 are

V1 =
1

CΣ

(Vb(Cg + C2)− VgCg +Q) (3.1)

V2 =
1

CΣ

(VbC1 + VgCg −Q), (3.2)
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3.1 Single-electron behavior

 V
 V

 C 1 , R1  C 2 , R2

 C

b

g
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Figure 3.1: Schematic circuit equivalent of a QD

where CΣ = C1 + C2 + Cg is the total capacitance and Q = en is the island charge.

When tunneling takes place in junction 1, the change in the total energy is

∆U±1 =
Q2

2CΣ

− (Q∓ e)2

2CΣ

∓ eV1

=
e

CΣ

(
−e

2
∓ [en+ (Cg + C2)Vb − CgVg]

) (3.3)

Similarly, for junction 2

∆U±2 =
Q2

2CΣ

− (Q± e)2

2CΣ

∓ eV2

=
e

CΣ

(
−e

2
∓ [en− C1Vb − CgVg]

) (3.4)

Eq. 3.3 and 3.4 can be used to generate a stability plot in the Vb−Vg plane. The

boundary lines are given by setting ∆U1,2 = 0. The shaded area in Fig. 3.2 are called
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3.2 Device and measurement set-up

CΣVb/e

CgVg/e

Vg

I

1

1/2 3/2

Figure 3.2: A stability diagram with C2 = Cg and C1 = 2Cg

Coulomb diamonds. Inside each diamond the number of electrons is constant, hence

Coulomb blockade is established. If we keep the source-drain bias Vb a small constant

and scan Vg, we will observe periodic conduction peaks with period ∆Vg = e
Cg

, which

are the Coulomb oscillations.

3.2 Device and measurement set-up

The Pd Schottky gates are energized to form a QD. When negative voltage is applied,

the gates deplete the underlying 2DEG so that single electron phenomena can be

observed. Tunnel barriers that are tuned by the gate voltages can isolate the 2DEG

and form a well-defined QD. To observe Coulomb oscillations, one usually sweeps the

voltage applied on one of the dot gates while keeping all the other gates at a constant

voltage. For instance we can apply constant voltage on gates U, L, M, R in Fig. 2.6(a)
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3.2 Device and measurement set-up

Lock-in
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_
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Figure 3.3: Schematic diagram of QD transport measurement.

and scan gate T.

Fig. 3.3 is a schematic diagram of the typical measurement circuit. The ohmic

contacts provide connections to the source and drain of the QD. A dc voltage V is

combined with a small ac signal v generated by the lock-in amplifier (Signal Recovery

7225) and applied at the source of the QD. The root mean square (rms) of v is chosen

between 3 and 30 µV. The drain is connected to a lab-built current amplifier providing

a path to ground for the current. The current is usually amplified by 107 to 109 times

before returned to the lock-in, which then demodulates the signal and produces a dc

output of the QD current I caused by the small voltage signal. By dividing I by v

the differential conductance Gd can be obtained.

There are various ways to combine two voltage sources. The first is to use a

summing amplifier which provides reliable results for a wide range of signals but

requires battery for operation. Another option is to use a passive adder of dc and

ac voltages. The circuit shown in Fig. 3.4, from Ref. [42], produces an output of

V × 10−3 + v × 10−5. We can also use a lab-built voltage reference by floating it

internally and connecting its ‘ground’ to an external voltage source. The output
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3.3 Coulomb blockade measurement
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1 ΜΩ

Figure 3.4: Circuit diagram for combining dc and ac bias voltages

will be a combination of the reference signal and the signal generated by the voltage

reference itself. This is especially useful if a constant dc offset much larger than the

external small voltage signal is required since one can apply a voltage divider on the

external voltage source to achieve a more stable voltage output.

3.3 Coulomb blockade measurement

The top gate structure enables versatile control over the tunnel barriers and island

potential of the QD. Fig. 3.5 shows an example of measured Coulomb oscillations,

displaying the change of conductance as a function of the voltage applied on the

gate. A conductance peak corresponds to the addition of one electron. The period of

oscillations ∆Vg can be used to compute the coupling capacitance Cg of the gate to

the QD. For instance in Fig. 3.5 ∆Vg ≈ 8 mV and Cg ≈ 20 aF.
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3.3 Coulomb blockade measurement
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Figure 3.5: Coulomb oscillations of a Si/SiGe QD

When both Vg and the bias voltage VSD are varied, a stability plot of Coulomb

diamonds can be obtained. One such example is shown in Fig. 3.6, where the tran-

sition between an open QD to a relatively closed QD can be seen as Vg becomes

more negative. The span ∆VSD of the diamond in VSD reveals the total capacitance

CΣ of the QD and subsequently the charging energy Ec. For the lowest diamond in

Fig. 3.6 (between Vg = −0.84 and −0.81 V) CΣ ≈ 46 aF and Ec = e2/CΣ ≈ 1.7 meV.

It can be seen in Fig. 3.6 that as the QD becomes more pinched-off the diamonds

become bigger and correspondingly Ec increases. This is an indication that the QD

has reached the few-electron regime since the capacitances become smaller as the QD

becomes smaller and more isolated.

Both Fig. 3.5 and 3.6 are measured at 0.3 K. The stable behavior of the QD

demonstrated by Fig. 3.6 also suggests that the low-leakage fabrication process is

functioning well. In Fig. 3.6 we observe features of the Kondo effect, whose signature is
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3.3 Coulomb blockade measurement
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Figure 3.6: Differential conductance in a QD vs bias and gate voltages showing mul-

tiple Coulomb diamonds

the enhancement of conductance inside the Coulomb diamond, which will be discussed

in detail in the following chapter.
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Chapter 4

Valley Kondo effect

4.1 Theoretical background

4.1.1 Pure spin Kondo effect

From Chapter 3 it is clear that charge quantization in a QD is a result of potential

confinement and weak tunnel coupling to the leads. If the tunnel coupling is increased

by reducing the tunnel barriers but the number of charges still remains discrete,

localized electrons in the QD have a chance to interact with delocalized electrons

in the leads and virtual processes involving higher order tunneling have to be taken

into account. When spin plays a role, these virtual processes give rise to the Kondo

effect in QDs, resembling the interaction between magnetic impurities and conduction

electrons in metals, from which the name originates.

The spin 1/2 Kondo effect comprehensively studied in GaAs QDs [43, 44] is usually

observed when there is an odd number of electrons in the QD, in which the spin of
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4.1 Theoretical background

Figure 4.1: Schematic diagram of a spin 1/2 Kondo process

an unpaired electron is screened by spins in the leads to form a singlet, resulting in a

conductance resonance at zero dc bias. An example is illustrated in Fig. 4.1, in which

a spin-up electron tunnels off the QD and a spin-up electron from the lead tunnels

on the QD. When spin degeneracy is lifted by a magnetic field B, the spin-Kondo

resonance splits into two peaks at eVSD = ±gµBB, g being the Landé factor and µB

the Bohr magneton [45].

The Anderson Hamiltonian [46] is applied in Ref. [45] to establish a model for the

Kondo effect in QDs:

H =
∑
ikσ

εkσc
†
ikσcikσ +

∑
σ

εσa
†
σaσ + Un↑n↓ +

∑
ikσ

(Vikσc
†
kσaσ + H.c.), (4.1)

where c†kσ (ckσ) creates (destroys) an electron with energy εkσ, momentum k and spin

σ in lead i ∈ L,R and a†σ (aσ) are the creation and annihilation operators for a spin-

σ (σ ∈↑, ↓) electron on the QD. The third term is the Coulomb interaction taken

to forbid double occupancy and the fourth term describes the transfer of electrons

between the leads and the QD.
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4.1 Theoretical background

The current through the QD can be expressed as

J =
e

~
∑
σ

∫
dω[fL(ω)− fR(ω)]Γσ(ω)

[
− 1

π
ImGr

σ(ω)

]
, (4.2)

where fL,R are the Fermi functions in the leads and (−1/π)ImGr
σ(ω) is the den-

sity of states, Gr
σ being the Fourier transform of the retarded Green function. Tun-

nel couplings to the leads are defined as Γiσ(ω) = 2π
∑

ik |Vkσ|2 × δ(ω − εkσ) and

1/Γσ(ω) = 1/ΓLσ (ω) + 1/ΓRσ (ω) in Eq. 4.2. Calculations in Ref. [45] find logarithmic

divergences signaling Kondo peaks at µL(R)±∆ε in the density of states, where µL(R)

is the chemical potential of the left (right) lead and ±1
2
∆ε is the Zeeman splitting.

Therefore, the distance between the two Kondo peaks in a magnetic field is twice

the Zeeman splitting.

More recently the observation of Kondo effect has been expanded to QDs with

integer spin [47, 48, 49, 50, 51], in which singlet-triplet transition is usually involved

and the interference of two available channels can lead to the two-stage Kondo effect

[52, 53, 54].

4.1.2 Kondo effect in Si with valley degree of freedom

The valley degree of freedom of conduction band electrons is one of several intriguing

properties distinguishing Si from III-V materials. The six-fold valley degeneracy in

bulk Si is reduced to two-fold in Si/SiGe heterostructures due to the confinement of

electrons in the 2DEG. The resulting valley splitting ∆ in strained Si quantum wells

has been studied using conventional transport [55, 56] and is typically of order 0.1

meV. The addition of the valley degree of freedom allows for a new set of Kondo

phenomena to emerge, since both spin and valley indices can be screened. Kondo
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4.1 Theoretical background

effects in Si/SiGe QDs have rarely been reported [57], although there have been recent

studies of dopants in a Si fin-type field effect transistor [58, 59]. This is perhaps not

surprising, since for the valley Kondo effect to occur, the energy associated with

the Kondo temperature TK must be larger than the valley splitting ∆, i.e. kBTK >

∆ where kB is the Boltzmann constant, a rather stringent condition. Nonetheless,

how the valley degeneracy in Si affects the Kondo effect in Si/SiGe QDs has been

investigated theoretically [60, 61] and found to share some resemblance with carbon

nanotubes [62]. The following introduction is based on Ref. [60, 61].

The Hamiltonian expressed in Eq.4.1 is expanded to

H =
∑
ikmσ

εkmσc
†
ikmσcikmσ +

∑
mσ

εmσa
†
mσamσ + U

∑
m′σ′ 6=mσ

nm′σ′nmσ

+
∑
ikmm̄σ

(Vikmm̄σc
†
ikmσam̄σ + H.c.),

(4.3)

where c†ikmσ (cikmσ) creates (destroys) an electron with momentum k, valley index

m ∈ o, e, spin σ ∈↑, ↓ and energy εkmσ in lead i ∈ L,R and a†mσ (amσ) are the

creation and annihilation operators for an electron with valley m and spin σ on the

QD. The third term is the Coulomb interaction taken to forbid double occupancy and

the remaining term describes the transfer of electrons between the leads with valley

index m and the QD with valley index m̄.

When Vik(m=m̄)σ < Vik(m6=m̄)σ, the valley mixing is relatively strong. The ground

state of H is a combination of terms that can be visualized graphically as processes

that involve the hopping of an electron from the left lead to the right lead. Each

distinct process can give rise to a peak in the conductance if the amplitude of the

process is large enough while unobserved processes indicate a small tunneling matrix
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4.2 Measurement in perpendicular magnetic field

element. The position of the peak can be read off from the energy change of the elec-

tron in the process, while the height of the peak depends on the tunneling amplitude

that produces it.

4.2 Measurement in perpendicular magnetic field

We measure the differential conductance of a Si/SiGe QD (Sample I) with lock-in

techniques, using an ac bias of 3 µV. The sample is cooled down to about 60 mK,

corresponding to an electron temperature of Te ≈ 150 mK and oriented perpendicular

to the magnetic field.

Interesting conductance enhancements appear in the Coulomb blockade region, as

shown in the stability diagram of the QD differential conductance G in Fig. 4.2. The

x-axis is the dc bias voltage VSD (a slight offset is present) while the gate voltage Vg

is displayed on the y-axis. There is a lower Coulomb diamond between Vg ≈ −0.85

and −0.69 V and an upper one starting at Vg ≈ −0.69 and extending towards the top

of the figure. The relatively large size of this lower diamond (VSD between ±3 mV)

suggests that the QD is in the few-electron regime. It also shows co-tunneling features

consisting of two roughly vertical regions of enhanced conductance for VSD < −0.5

mV and VSD > 0.9 mV that depend only weakly on Vg. The inelastic co-tunneling

is due to virtual transitions to an excited state with excitation energy of about 0.8

meV, indicating that it involves a change in orbital state rather than valley state, for

which the excited state energies are typically < 0.2 meV. The co-tunneling feature

has important implications for electron number N in the QD [63]. Each energy level

can be doubly occupied. For N odd, the inelastic co-tunneling can always happen via

the energetically favorable singly-occupied level instead of a higher level. Therefore,
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4.2 Measurement in perpendicular magnetic field
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Figure 4.2: Stability diagram of differential conductance showing Kondo effect
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4.2 Measurement in perpendicular magnetic field

there will not be an abrupt enhancement of conductance at a certain bias voltage in

the Coulomb blockade. For N even on the other hand, for a co-tunneling event to

take place it has to borrow a higher level and can only happen when the bias voltage

reaches the threshold determined by the energy level spacing, yielding a sudden step

in the conductance. Thus the presence of the co-tunneling in the lower diamond

identifies it as corresponding to an even-electron-number state. The upper diamond

must therefore correspond to an odd-electron-number state. We refer to the upper

(lower) diamond as the odd(even)-number diamond. The Kondo effect in Si/SiGe

QDs is forbidden for N = 4m,m = 0, 1, 2, ... [61] since the spin and valley states for a

particular orbital state are filled. Therefore, the even-number diamond corresponds

to N = 4m+ 2 while the odd-number diamond corresponds to N = 4m+ 3.

The temperature dependence of the resonances in the odd- and even-number di-

amonds is shown in Fig. 4.3(a) and (b), respectively, while their magnetic field de-

pendence is shown in Fig. 4.3(c) and (d). As can be seen in Fig. 4.3(a) and (b),

the resonances weaken as the temperature increases and vanish for T > 1.8 K, ver-

ifying the presence of Kondo physics. There are several notable aspects of these

resonances that contradict the spin 1/2 Kondo picture, such as a split resonance that

coalesces into a single peak in the odd-number diamond and a single resonance in the

even-number diamond that does not shift in VSD as B is increased. These seemingly

counterintuitive phenomena are indicators of valley Kondo physics in our QD.

Focusing on the field dependence of these features in Fig. 4.3(c), as B is increased

the two peaks broaden and coalesce, becoming indistinguishable at B=1 T. The

processes resulting in the Kondo effect for a QD with N = 4m + 3 are illustrated in

Fig. 4.4(a). Theory predicts three peaks in the absence of B when the valley index is
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Figure 4.3: Temperature and field dependence of the Kondo resonances at Vg =

−0.58,−0.78 V
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4.2 Measurement in perpendicular magnetic field

conserved: a peak at zero bias that involves a spin flip, commonly observed in GaAs

QDs; and two valley side peaks that are due to changes in both spin and valley indices

as the electrons tunnel through the QD [60]. A magnetic field should split each valley

Kondo peak into three peaks, the distance between neighboring peaks being gµBB.

In Fig. 4.4 two valley states with energy difference ∆ are labeled by o and e. Note,

however, that since parity is not a good quantum number in the device, the states

are not necessarily odd and even in the z-coordinate.

In the upper panel (B = 0), the orange arrows correspond to the conventional

spin 1/2 Kondo effect that results in a central peak; note that the processes involve

tunneling to and from an e valley state. In contrast, the solid blue arrows illustrate

a process in which an electron occupying the o valley state tunnels off the QD, and

another electron from the lead tunnels on to the QD to occupy the e state, resulting in

the side peaks. A spin-reversed process is illustrated by the dashed lines. The absence

of the central peak in our experimental results suggests that the tunneling involving an

odd valley is stronger than the pure even-valley tunneling (Vikm(m̄=e)σ < Vikm(m̄=o)σ)

and the Kondo temperature corresponding to the inter-valley process is higher than

the spin-1/2 process. Therefore, at finite temperature, the side peaks are easier to

observe while the center peak is obscured.

In this picture, the separation in VSD of the two side peaks is twice the zero-field

valley splitting ∆ in the QD, so ∆ ≈ 0.28 meV. A magnetic field lifts the spin-

degeneracy of each valley state. In the lower panel (B > 0), each valley state splits

into two spin states. A spin-down (up) electron in the o state tunnels off the QD

while a spin-up (down) electron tunnels on to the e state, as indicated by the solid

(dashed) arrows, swapping both valley and spin indices. The other two processes
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Figure 4.4: Single-particle processes that can be associated with each conductance

peak. The many-body wavefunction is a complicated combination of terms each of

which is also associated with a process.

remain degenerate, swapping only the valley index while preserving the spin index.

As a result, the four processes generate three resonances in finite B field. The resulting

splitting broadens the two Kondo peaks and they coalesce into one peak, as shown in

Fig. 4.3(c).

In the even-number diamond, there is a single resonance at zero bias. As shown

in Fig. 4.3(b) the height of the resonance decreases monotonically with temperature,

vanishing at ∼1.8 K, indicating a Kondo temperature of TK ∼3-4 K.

Surprisingly, as B is increased this central resonance does not split, as shown in

Fig. 4.3(d). In Fig. 4.5 where Vg = −0.83 V the FWHM of the Kondo resonance is

about 0.25 meV, comparable to the Zeeman splitting at B = 1 T and the Zeeman-
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Figure 4.5: Field dependence of the Kondo resonances at Vg = −0.83 V. The color

legend is the same as in Fig. 4.3.

split peaks would be resolved. However we still only observe a single peak. In fact,

a peak at zero dc bias that persists in a non-zero magnetic field is expected to be a

signature of pure valley Kondo effect, associating with a process in which the valley

index is not conserved [60, 61]. For B⊥ 6= 0 the center peak involving only valley

screening (upper panel of Fig. 4.4(b)) dominates while the side peaks (lower panel of

Fig. 4.4(b)) are suppressed. This indicates that the Kondo temperature relating to the

pure valley process is higher than that of the spin process, a result of strong valley

mixing Vik(m=m̄)σ < Vik(m 6=m̄)σ. Also, with the magnetic field perpendicular to the

2DEG, we expect some dependence of the tunneling matrix elements on B⊥, which

might also be the reason why the peak height as well as the co-tunneling features

show non-monotonic dependence on B⊥.
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4.3 Measurement in parallel magnetic field

4.3 Measurement in parallel magnetic field

The same sample is also measured in a parallel magnetic field B inside Kelvinox 400

with a base temperature of 20 mK and once again we observe non-splitting Kondo

peaks. Fig. 4.6 shows the stability plot of two charge states when the magnetic field

is off. A Kondo resonance at zero dc bias emerges in both charge states. When B

is turned on, the center peak in both diamonds persists without splitting even at

B ≥ 3 T, as demonstrated in Fig. 4.7. Since the g factor in Si is about 5 times bigger

than that in GaAs, 3 T here is comparable to 15 T for a GaAs based QD.

As can be seen in Fig. 4.7, the maximum of the resonances is gradually suppressed

by the increasing B. In Fig. 4.8 we plot the height for Vg = −0.75 V as a function of

B. The red line in the high field regime is a fit showing logorithmic dependence on

the magnetic field. It is clear that although B is unable to split the Kondo peak, the

energy associated with the magnetic field diminishes the Kondo effect.

In addition, we measure a different QD (Sample II). Again we find enhancement of

conductance in two consecutive Coulomb diamonds. In one diamond the resonance

behaves in a similar fashion as Sample I, which decreases with increasing B field

without splitting. As shown in Fig. 4.9, at B = 0 there is a single Kondo resonance.

It is gradually reduced as B is increased and at B = 2.5 T the Coulomb blockade is

fully recovered.

In a second diamond some side peak features are resolved. In Fig. 4.10 the curves

are offset by 60 nS/T×|B|. The center peak decreases with rising B without split-

ting. There are traces of two side peaks, indicated by the dashed lines, which move

towards the center. After converging at about 3.5 T they move away from each other
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4.4 Discussion

again. These features are very likely due to the Zeeman splitting of the valley side

peaks similar to that illustrated in Fig. 4.4(a), revealing a zero-field valley splitting

of about 0.35 mV. The g factor extracted from the two dashed lines are about 1.8

and 1.5 respectively, smaller than but comparable to the standard value of g = 2.

The asymmetry inside the Coulomb blockade suppresses the Kondo peak at the pos-

itive bias, resulting in very weak signal that is hard to read. Nonetheless, the data

demonstrate interplay between the spin and valley degrees of freedom.

4.4 Discussion

The center peak that we repeatedly observe is rather unusual. First, it suggests

that valley index is not always conserved during tunneling, a subject of some debate

[62, 60, 59, 64, 65]. There is a fair chance that hopping between different valley

states is allowed due to the miscut in the Si/SiGe heterostructure. Secondly, for

the perpendicular field data, given a non-zero ∆, the QD electrons must occupy an

excited state rather than the ground state viewed in terms of single-particle levels (see

Fig. 4.4(b)). This is allowed energetically since by forming the many-body state with

the leads, the system gains energy on the order of kBTK ≈ 0.4 meV, estimated from

the FWHM of the central peak, in good agreement with the temperature at which the

resonance disappears. Assuming ∆ ≈ 0.28 meV in this even-number diamond, similar

to that in the odd-number diamond, we have ∆ < kBTK, recovering the condition for

the valley Kondo effect to be observed.

The experiments demonstrate that the Kondo effect in Si/SiGe QDs can be very

different due to the valley degree of freedom.
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Chapter 5

Superconducting single-electron

transistor

5.1 Introduction

The SET, first reported by Fulton and Dolan[66], is a sandwich structure of Al/Al2O3/Al

as shown in Fig. 2.6. In the normal state, an SET is essentially a QD with a small

energy level separation, and the discussion on QDs in Chapter 3 applies. Al has a

critical field of 0.01 T and a critical temperature of 1.2 K, below which it becomes

superconducting. For a superconducting SET, the carriers are Cooper pairs and

quasiparticles, as opposed to electrons in the normal state.

An SET consists of two superconductor-insulator-superconductor (SIS) Josephson

junctions. For a single SIS junction, the energy required to break a Cooper pair into

two quasiparticles is the superconducting gap 2∆i. When the bias voltage is larger
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5.1 Introduction

than 2∆i, quasiparticles are the main carriers, and the tunneling is dissipative. At

zero bias, a current can also occur as a result of coherent Cooper pair tunneling. In

order to observe well-defined Coulomb blockade effects, the Coulomb energy must be

much larger than the thermal energy, i.e. e2/CΣ � kBT . Additionally , the quantum

fluctuations in the particle number must be sufficiently small that each oscillation

peak can be well resolved. Starting from the Heisenberg uncertainty relation[41]:

∆E∆t > h (5.1)

where ∆E ∼ e2/CΣ, ∆t ≈ RCΣ, R being the tunnel resistance,

R� h

e2
= 25.8 kΩ (5.2)

For two junctions in series, the energy requirement for quasiparticle current be-

comes :

eVbias > 4∆i (5.3)

Inside the subgap regime where eVbias < 4∆i, current peaks arise mainly due to the

Josephson-quasiparticle (JQP) cycle and the double Josephson-quasiparticle (DJQP)

cycle [67], illustrated in Fig. 5.1. For a JQP process, a Cooper pair tunnels into the

island, increasing the charge number by two, followed by two subsequent tunneling of

quasiparticles out of the island and the charge number returns to the original value

(Fig. 5.1(a)). For a DJQP process, a Cooper pair tunnels into the island. After

a quasiparticle tunnels out, the remaining quasiparticle forms a Cooper pair with

another electron, leaving a hole in the island. The newly formed Cooper pair tunnels

out and an electron tunnels into the island to fill the hole (Fig. 5.1(b)). If the SET
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5.2 Results of dc measurement

Cooper pair

hole

(a)

(b)

Figure 5.1: Illustrations of (a) JQP and (b) DJQP tunnelings

is biased near a JQP or DJQP resonance, a small change of the gate voltage, or the

island potential, will result in rapid variation of the conductance. This property of

the SET can be exploited to perform charge sensing.

5.2 Results of dc measurement

5.2.1 Characteristics of superconducting SET

For a dc-only measurement a circuit similar to that illustrated in Fig. 3.3 can be used,

replacing the QD with the SET. However for a combined dc and rf measurement the
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5.2 Results of dc measurement
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Figure 5.2: Measurement circuit for an internally grounded SET

SET will have to be internally grounded as shown in Fig. 5.2. Since the voltage of

− and + inputs of the current amplifier AI are maintained the same, the source and

drain voltage can be applied via the + port. The voltage amplifier AV reads the

difference between the + and − outputs, obtaining the SET current.

Here we demonstrate the measurement of a superconducting SET with the design

shown in Fig. 2.6(a). Fig. 2.8(b) is the I-V curve of the SET. The superconducting gap

is about 1 mV, with features of JQP/DJQP cycles at the shoulder, and supercurrent

at zero bias. The SET is responsive to both its own gate and the nearby dot gates.

Fig. 5.3 shows the Coulomb oscillations when the SET is biased at −0.35 mV and

the voltage on gate U (see Fig. 2.6(a)) is varied.

To have a more visual understanding of the SET behavior, we can do a 2-

dimensional sweep with the lock-in and generate a stability diagram as shown in

Fig. 5.4. The voltage on the SET gate is varied between −0.2 to 0.2 V, and the

source-drain bias is swept between −1.2 to 1.2 mV. Clear oscillations of differential

conductance can be seen. Peaks arising from Cooper pair (CP), DJQP and JQP tun-
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Figure 5.3: Coulomb oscillations of the SET current.

nelings in the stability map [68] are labeled in the figure. Theoretically the Cooper

pair peaks should have a 2e periodicity. In reality the 2e periodicity can be easily

destroyed by quasiparticle poisoning. However, with careful design to increase the

gap ∆i, the 2e periodicity has been observed[40, 69].

5.2.2 Charge sensing of a QD

Fig. 5.5 is the schematic diagram of a coupled QD-SET system, where Cd is the

capacitance between the dot gate and the QD and Cs is the capacitance between the

same dot gate to the SET. Meanwhile, the SET and the QD are coupled through Cc.

The effective offset charges induced by the gate voltage Vg on the SET Q0s and the
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Figure 5.4: Stability diagram of a superconducting SET, showing periodic conduc-

tance peaks from CP, DJQP and JQP tunnelings

49



5.2 Results of dc measurement
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Figure 5.5: A QD-SET system. SET and QD are coupled through Cc.

QD Q0d can be expressed as:

Q0s = CsVg + (CdVg −Nde)
Cc
CΣd

(5.4)

Q0d = CdVg + (CsVg −Nse)
Cc
CΣs

(5.5)

where Nde and Nse are electron numbers on the island of the QD and the SET,

respectively. CΣd = Cd + C3 + C4 + Cc and CΣs = Cs + C1 + C2 + Cc are their

respective total capacitances.

From Eq. 5.4 and 5.5 it is clear that the charge states of both the QD and the

SET can be modulated by Vg. On top of that the QD and the SET can affect each

other’s charge state as well. Therefore, for ideal charge sensing we want Cs � Cd,
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Figure 5.6: Simultaneous measurement of QD conductance Gd and SET current Is.

in which case the oscillation in SET current caused by direct coupling to Vg will be

much slower than the changes caused by the QD.

Fig. 5.6 shows an example of charge sensing. The red curve corresponds to the

differential conductance Gd of the QD, showing Coulomb oscillations. The blue curve

is the SET dc current. As a result of the coupling between the QD and the SET, as

the charge state in the QD is changed by one electron, a sudden change is induced in

the SET current. In some cases, Gd becomes too small to be measured but the SET

continues to sense charges as demonstrated in Fig. 5.7.
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Figure 5.7: Simultaneous measurement of QD conductance Gd and SET current Is.

The SET continues to sense charges in a Regime where Gd becomes too small to

measure.
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Chapter 6

Real-time charge detection

6.1 Radio-frequency SET

The ability of counting electrons one by one as they tunnel on and off the QD would

provide a more direct way of studying single-electron phenomena and offer sophisti-

cated read-out mechanism for quantum control. However it imposes great challenges

since electron charges as well as the time scale of electron tunneling are small. As

a result, a charge detector with high charge sensitivity and fast response time is

desirable.

The superconducting SET, having an ultra high charge sensitivity, is a promising

candidate. Nevertheless, the relatively large resistance of the SET Rd greatly limits

its detection time. With a typical value of Rd = 100 kΩ and the cable capacitance of

C = 1 nF, the bandwidth of the system is estimated to be 1/(2πRdC) = 1.6 kHz.

A solution to this problem, the radio-frequency SET (rf-SET), was developed by

Schoelkopf et al. in 1998. The essence of the rf-SET is impedance matching. The SET
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6.1 Radio-frequency SET

L

C Rd0Z

Figure 6.1: Schematic of the resonant circuit

is embedded in a resonant circuit which can be impedance-matched to the standard

50 Ω transmission line. Consider the LCR circuit illustrated in Fig. 6.1. The input

impedance is

Z = iωL+
1

iωC + 1/Rd

=
Rd

1 + ω2C2R2
d

+ iω
L− CRd(1− ω2LC)Rd

1 + ω2C2R2
d

.

(6.1)

In order to achieve perfect matching, the following conditions need to be satisfied:

Re[Z(ω0)] = Z0 (6.2)

Im[Z(ω0)] = 0, (6.3)

where ω0 is the resonant frequency. By solving Eq. 6.3, one arrives at

ω0 =
1√
LC

√
1− 4C

R2
d

. (6.4)
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6.1 Radio-frequency SET

At the resonant frequency ω0 the input impedance is real and can be solved by

substituting Eq. 6.4 in Eq. 6.1:

Z(ω0) =
L

CRd

. (6.5)

For perfect matching L
CRd

= Z0 (Eq. 6.2). In reality, to comply with available

electronic devices, we want f0 = ω0/2π ≈ 1 GHz. This results in a less-than-perfect

matching network. For f0 = 1 GHz and a typical value of the shunt capacitance

C = 0.3 pF, L ≈ 100 nH and ω0 ≈ 1√
LC

. It is convenient to define the unloaded

quality factor:

Q0 ≡
ω0L

Z0

=

√
L

C
/Z0 (6.6)

The reflection coefficient is defined as

Γ ≡ V −

V +
=
Z − Z0

Z + Z0

. (6.7)

Substituting in Eq. 6.5 and 6.6 we get the reflection coefficient Γ1 for the resonant

circuit

Γ1 = −1 +
2

1 + Rd

Q2
0Z0

. (6.8)

Without the matching network, the transmission line is directly terminated by the

SET and the reflection coefficient Γ2 is

Γ2 =
Rd − Z0

Rd + Z0

= −1 +
2

1 + Z0

Rd

. (6.9)
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Let Z0/Rd = x. Since x� 1 we can expand Γ1,Γ2 as

Γ1 = −1 + 2Q2
0x (6.10)

Γ2 = 1− 2x (6.11)

and consequently

|Γ1|2 = 1− 4Q2
0x (6.12)

|Γ2|2 = 1− 4x. (6.13)

Therefore, for the same amount of change inRd, the modulation in the reflected power,

which is proportional to |Γ|2, will be enhanced by Q2
0 by the matching network.

6.2 Experimental set-up

6.2.1 Measurement scheme

The sample designs are shown in Fig. 2.6. We use a reflectometry circuit, illustrated

by Fig. 6.2. The differential resistance of the SET Rd, an off-chip inductor L and the

stray capacitance C to ground form the rf-SET resonant circuit, which is coupled to

a QD. We fabricate a superconducting Al spiral inductor to avoid introducing extra

loss. The SET is internally grounded by directly wire-bonding the SET drain to the

ground plane. The sample is mounted in the 3He refrigerator with a base temperature

of 0.3 K. A carrier wave at the resonant frequency is fed into the rf-SET from the

coupling terminal of the directional coupler. The charge state in the QD shifts the
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Figure 6.2: Circuit diagram for the real-time measurement

offset charges in the SET and subsequently Rd. When the time scale of electron

tunneling falls within the detection bandwidth of the rf-SET, fast read-out of the

charge state can be realized. The reflected signal of the rf-SET, carrying information

about the QD charge state, is amplified by a high electron mobility transistor (HEMT)

amplifier at 2.9 K after passing through the directional coupler and the circulator

that prevents the noise generated by the amplifier from entering the rf-SET. At room

temperature, the signal is further amplified by a field effect transistor (FET) amplifier

before it is demodulated by a mixer. Eventually the real-time signal is recorded by a

digital oscilloscope (TDS7704B).

A double-balance mixer (model ZMF-2000 by Mini-Circuit) is used to demodulate
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6.2 Experimental set-up

RF

LO

IF

Figure 6.3: Schematic of a mixer

the reflected signal. As illustrated in Fig. 6.3, a mixer has three ports, namely the

local oscillation (LO), the RF and the intermediate frequency (IF) port. Following

Ref.[70], the reflected signal modulated by the QD charge state, sent into the RF port

can be expressed as

v(t) = v0(1 +m cosωmt) cosω0t, (6.14)

where the modulation frequency ωm is much smaller than the resonant frequency ω0

and m is the modulation depth (0 ≤ m ≤ 1). The LO port is connected to a signal

generated at the carrier wave frequency ω0:

vl(t) = v1 cos (ω0t+ φ) (6.15)

In the actual experiment, we use two separate but phase-locked signal generators for

the carrier wave sent into the rf-SET and the signal for the LO port. By doing this

instead of using a power splitter, we can easily adjust the power of the two waves

individually.

The IF port output is the product of v(t) and vl(t). By substituting in Eq. 6.14
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Figure 6.4: Demodulated gate signal

and Eq. 6.15, we can express the output signal as

vout = v(t)× vl(t)

=
v0v1

2
(1 +m cosωmt) cos (2ω0t+ φ)

+
v0v1

2
(m cosφ cos (ωmt) + cosφ)

(6.16)

A low-pass filter can be used to filter away the first term at the frequency of 2ω0.

In the experiment we use a 2 MHz low pass filter. The remaining term recovers the

modulating signal at ωm with modulation depth m. It is usually necessary to tune

the phase shift φ to be equal to nπ to achieve maximum signal amplitude, which is

achieved by the phase shifter in Fig. 6.2.

To verify that the mixer functions properly, we apply a small excitation at 100

kHz on the SET’s own gate, corresponding to 0.012 e modulation of the offset charges.

The carrier wave is at the resonant frequency of the rf-SET, 936 MHz. Fig. 6.4 shows

the output of the mixer recorded by the oscilloscope, recovering the modulation signal

at 100 kHz.
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6.2 Experimental set-up

6.2.2 Attenuation and amplification

The input coaxial line includes attenuation of 34 dB to help achieve the desired small

carrier wave amplitude and amplifiers are used at the output to acquire measurable

signals. The HEMT amplifier, mounted on the pulse tube cooler (PTC) 2nd stage,

amplifies the signal by about 25 dB at 2.9 K and the FET amplifier at room temper-

ature adds another 40 dB.

To verify the noise added by the amplifiers we measure the noise spectrum of

the output signals. The SET is biased at the normal conductance regime and we

send in a carrier wave of -54 dBm at f0 = 892 MHz. In Fig. 6.5 the green curve

represents the noise floor of the oscilloscope used to measure the real-times signal.

The bandwidth from dc to 2 MHz is defined by the low-pass filter at the output. The

red curve corresponds to the noise spectrum when the FET amplifier is turned on,

adding about 6 dB to the noise floor and finally the HEMT amplifier is also turned

on, resulting in the black curve. The whole chain of amplifiers add a total of about 18

dB to the noise floor of the oscilloscope and from Fig. 6.5 we can see that the major

source of noise is the cold HEMT amplifier.

6.2.3 Calibration of the rf-SET

A network analyzer that simultaneously measures the reflection coefficient over a

specified frequency range is used to locate the resonant frequency f0 = ω0/2π of the rf-

SET. As discussed in Section 6.1, the reflection coefficient Γ is modulated by the SET

differential resistance Rd. One example is demonstrated in Fig. 6.6. Fig. 6.6(a) shows

the superconducting I-V curve of an rf-SET with clear superconducting gap. The

reflection coefficient Γ is plotted in Fig. 6.6(b), where different curves corresponding
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Figure 6.5: Noise spectrum of the amplifiers

to different Rd, indicating a resonant frequency of 883 MHz. The legend indicates the

corresponding dc bias applied on the SET. Tracing the superconducting I-V curve

of the SET in Fig. 6.6(a), we can see that Rd can be changed by the bias voltage.

Within the superconducting gap Rd → ∞ and most of the power is reflected (black

curve). When Rd becomes finite good matching can occur and the power is dissipated

in the rf-SET, resulting in a dip in Γ at the resonant frequency f0 as indicated by the

blue and red curves.

In what follows we will calibrate the charge sensitivity δq of the rf-SET. First

we measure the coulomb oscillations of the SET by recording the dc current in the

sub-gap regime while sweeping the SET gate, as shown in Fig. 5.3 and determine the

gate voltage that corresponds to one electron cycle. Then a carrier wave at f0 is sent

into the rf-SET. Meanwhile, a small ac signal at 100 kHz, corresponding to a fraction

of an electron cycle q0 is applied to the SET gate. The spectrum of the reflected

power is measured by a spectrum analyzer, which shows a major peak at f0 and two
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Figure 6.6: Calibration of an rf-SET
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side peaks 100 kHz away from f0 as a result of the modulation from the gate. The

charge sensitivity δq can be determined by the signal-to-noise ratio (SNR) of the side

peaks with

δq =
q0√

2B10SNR/20
, (6.17)

where B is the resolution bandwidth and the SNR is in dB. In Fig. 6.6(c) SNR= 32

dB, the gate excitation corresponds to q0 = 0.015 e and the resolution bandwidth

of the spectrum analyzer is set to be 1 kHz. From Eq. 6.17 the charge sensitivity is

calculated to be 8× 10−6e/
√

Hz.

6.3 Real-time results

6.3.1 Read-out of electron tunneling

Although the intrinsic bandwidth of the rf-SET can reach 100 MHz, in practice the

detection bandwidth is limited by noise and weak coupling to the QD. We therefore

use a 2 MHz low pass filter at the output and focus on time scales longer than

microseconds. A change in the QD occupancy by one electron manifests itself as

switching between two levels in the time domain resembling a random telegraph

signal (RTS), which is what we observe when all three dot gates are sufficiently

energized. An example of such switching is shown in Fig. 6.7 for an rf-SET with

δq = 4× 10−6e/
√

Hz. Fig. 6.7(a) corresponds to point A in the QD transport current

(Fig. 6.7(d)), in which the lower level, i.e. the (N) electron state in Fig. 6.7(d) is

more stable, with occasional upward transitions to the (N + 1) state. At point B

the two charge states are degenerate so the dwell times of each level are comparable,

as shown in Fig. 6.7(b). At point C the (N + 1) state becomes more probable, as
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demonstrated in Fig. 6.7(c).

We can open up the QD by reducing the voltage applied on the gates. As the

tunnel barriers become more transparent the timescale of the switching events re-

duces, as shown in Fig. 6.8. This rf-SET can resolve RTS with a resolution of 10

µs, demonstrating its ability to perform fast charge sensing. The minimum detection

time tm in real-time measurement can be estimated as [71]

tm ≈ 8(
δq

κe
)2, (6.18)

where κe ∼0.01e is the shift in rf-SET’s polarization charge due to a change of one

electron in the QD charge state. The lower bound of tm is estimated to be in the

microsecond range. When charge sensing the QD, δq usually does not reach the

optimal value quoted above and the detection time we observe is reasonable.

6.3.2 Spectral analysis

A fast Fourier transform (FFT) can be applied on the RTS data to obtain the spec-

trum, from which the total tunneling rate Γ = Γ0+Γ1 can be extracted. The respective

tunneling rates correspond to Γ0 = τ−1
0 and Γ1 = τ−1

1 , where τ0,1 are the mean times

spent in each state.

Fig. 6.9 shows the power spectra of the rf-SET output near two different charge

degeneracy points fit to a Lorentzian function (blue lines). In Fig. 6.9(a) the value

of the total tunneling rate is extracted to be Γ = 2.24 × 102 s−1 and for Fig. 6.9(b)

Γ = 3.16× 103 s−1.
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Figure 6.7: Representative real-time output of an rf-SET reading out the change of

a charge state in the QD.
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Chapter 7

Double quantum dot charge sensing

7.1 Classical theory for double quantum dots

When two single QDs are coupled to each other, they form a double quantum dot

(DQD) system. In this introduction we ignore the energy quantization in the QDs,

resulting in a purely classical description of single-electron phenomena. Following the

method in [72] we can model the DQD as shown in Fig. 7.1.

The charge and potential on dot 1(2) are Q1(2) and V1(2). Each dot is coupled

to a gate voltage V1(2) through a capacitor Cg1(2). The two dots are coupled to each

other via a capacitor Cm and the whole DQD is coupled to the source (drain) voltage

VL(VR) via the capacitor CL(CR). The total charges Q1(2) on dot 1(2) can be written

as

Q1 = CL(V1 − VL) + Cg1(V1 − Vg1) + Cm(V1 − V2) (7.1)

Q2 = CR(V2 − VR) + Cg2(V2 − Vg2) + Cm(V2 − V1), (7.2)
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V₁ , Q₁ V₂ , Q₂

Vg1

Vg2

VL VR

Cg1

Cg2

CmCL CR

Figure 7.1: Model of a DQD system.

which can also be rearranged in the vector form as

Qeff =

Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2

 =

 C1 −Cm

−Cm C2


V1

V2

 , (7.3)

where C1 = CL + Cg1 + Cm and C2 = CR + Cg2 + Cm. We can rewrite Eq. 7.3 as

−→
Q eff = Ccc ·

−→
V , (7.4)

with the capacitance matrix Ccc =
(

C1 −Cm
−Cm C2

)
and the voltage vector

−→
V =

(
V1
V2

)
.

The electrostatic energy is given by

U =
1

2

−→
V ·
−→
Q eff =

1

2
(C−1

cc ·
−→
Q eff ) ·

−→
Q eff . (7.5)

Rewriting Q1(2) as Q1(2) = −eN1(2), U becomes a function of N1 and N2, i. e.
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7.1 Classical theory for double quantum dots

U(N1, N2), where N1(2) is the number of electrons in dot 1(2). The electrochemical

potential µ1(2)(N1, N2) of each dot, defined as the energy required to add the N1(2)th

electron to dot 1(2), can be expressed as

µ1(N1, N2) ≡ U(N1, N2)− U(N1 − 1, N2) (7.6)

µ2(N1, N2) ≡ U(N1, N2)− U(N1, N2 − 1) (7.7)

Let VR = 0 and VL = V . In the Vg1, Vg2 plane, borders of charge stability regions

are defined by the following groups of lines:

µ1(N1 + 1, N2) = −eV (7.8)

µ2(N1, N2 + 1) = 0 (7.9)

µ1(N1 + 1, N2) = µ2(N1, N2 + 1). (7.10)

7.1.1 Linear transport regime

We first consider the linear transport regime, in which V ≈ 0. We construct the

charge stability diagram, commonly known as the honeycomb diagram with Eq. 7.8-

7.10 in Fig. 7.2, using the following parameters: C1 = 80 aF, C2 = 60 aF, Cg1 = 10

aF and Cg2 = 2.4 aF while varying the value of Cm.

When Cm � C1, C2, the two dots are mostly decoupled, and the system behaves

like two single dots. As shown in Fig. 7.2(a) corresponding to Cm = 2 aF, the red

lines separate the different charge states in dot 1 and the blue lines separate the

different charge states in dot 2. Vg1 and Vg2 control the charge states in dot 1 and 2

respectively, with little effect on the other dot, as demonstrated by the approximately
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7.1 Classical theory for double quantum dots

vertical red lines and the approximately horizontal blue lines. The charge states are

labeled with (N1, N2). As Cm increases, the two dots begin to couple to each other

and the honeycomb structure appears (Fig. 7.2(b)). The intersection of the four

neighboring charge states separate into triple points, connected by the green lines as

shown in Fig. 7.2(b) where Cm = 20 aF. If the DQD is sufficiently isolated from the

leads, triple points become the only places where detectable charge transitions can

occur, since edges of the honeycombs are only visible due to co-tunneling processes.

As Cm increases further and approaches C1, C2, the DQD is equivalent to one big

single QD and the charge states are better described by N = N1 +N2 instead of N1

and N2 individually. In Fig. 7.2(c) we simulate the stability diagram for Cm = 55

aF. It can be seen that the honeycombs transform into regions between parallel lines,

typical for a single QD controlled by two gates.

7.1.2 Nonlinear transport regime

We now introduce a non-zero bias V . By solving Eq. 7.8- 7.10, we can again simulate

the stability diagram. The results for V = 0.5 mV and V = −0.5 mV are shown in

Fig. 7.3(a) and (b), respectively. The capacitances are the same as in Fig. 7.2(b). It

can be seen that triple points expand into triangles in the presence of a bias voltage.

Bias voltages of different signs result in triangles with 180◦-rotated orientations. It

is worth noticing that the triple points expand in all directions as V is increased

and all three groups of lines, each group with a different slope, are shifted. The

relative positions of the positive-bias triangles, the triple points at zero bias, and the

negative-bias triangles are demonstrated in Fig. 7.3(c).
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dot 1 dot 1dot 2 dot 2
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Figure 7.4: Schematic illustration of Pauli spin blockade. The red(blue) lines labeled

with S(T) represent the singlet(triplet) states. The singlet and triplet states in dot 2

are nearly degenerate due to weak interdot tunnel coupling.

7.2 Pauli spin blockade

In DQD the effect of Pauli spin blockade can appear when an energetically favor-

able state cannot be accessed due to spin conservation, preventing charge transitions

through the DQD from happening [73, 74, 75, 76, 77, 78, 79, 80]. In the case of

the (N1, N2) = (2, 0) → (1, 1) transition, when the left lead is negatively biased,

corresponding to Fig. 7.4(a), an electron entering dot 1 forming a (2,0) singlet can

exit through the (1,1) singlet state. The singlet and the triplet states of (1,1) are

nearly degenerate due to weak interdot tunneling [81]. At positive bias illustrated in

Fig. 7.4(b), an electron can enter dot 2 to form a (1,1) triplet state. Exit through

(2,0) singlet state is forbidden due to spin conservation and transition is blockaded.

This asymmetry of negative and positive biases results in current rectification.
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Figure 7.5: Circuit diagram for DQD charge sensing

7.3 Experimental result

7.3.1 Measurement set-up

In this sample, an rf-SET with a charge sensitivity of 5× 10−5 e/
√

Hz is coupled to a

DQD. In this case, the best possible detection time is about 200 µs, which makes it

very difficult for the rf-SET to perform real-time measurement, so the reflected signal

is demodulated by a diode detector and averaged by a 15 Hz low-pass (LP) filter.

The sample is measured at a temperature of 0.3 K. Fig. 7.5 is a schematic diagram

of the measurement circuit.

We form a DQD with gates 1-4 (see Fig. 2.6(c)). Voltages Vg3 and Vg4 are kept

constant, while Vg1, Vg2 control the left and right dots respectively. The stability

diagram of a nearly uncoupled DQD is plotted in Fig. 7.6(a) and (b). In Fig. 7.6(a)

the differential conductance G is taken with lock-in measurement. In Fig. 7.6(b) the
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Figure 7.6: Stability diagram of a nearly uncoupled DQD taken with (a) lock-in and

(b) rf-SET

reflected signal of the rf-SET is plotted. The results taken with the two methods are

comparable.

7.3.2 Measurement of stability diagram in reality

Fig. 7.7 shows the stability diagram of a coupled DQD at approximately zero bias

mapped out by the rf-SET. The transport through the DQD is too resistive (> 1MΩ)

for a reliable lock-in measurement. The color scale represents the level of the reflected

power, converted into voltage Vr. The characteristic honeycomb-shaped charge sta-

bility diagram of a DQD with multiple pairs of triple points can be seen. However,

upon careful comparison, there is a significant discrepancy between the simulated

Fig. 7.2(b) and Fig. 7.7. In Fig. 7.2(b), the centers of the green lines, i. e. the centers

of each pair of triple points, are align in a rectangular grid. In Fig. 7.7 the grid is

not rectangle anymore but clearly tilted. This distortion suggests that there is direct
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Figure 7.7: Honeycomb diagram of the DQD measured by the rf-SET

coupling between dot 1 and gate 2 (as well as between dot 2 and gate 1) that is

ignored by the simplified model in Fig. 7.1.

We can add in a cross-coupling capacitance Ca between dot 1 and gate 2 as well

as Cb between dot 2 and gate 1, as illustrated in Fig. 7.8. Correspondingly, Eq. 7.3

is modified as

Qeff =

Q1 + CLVL + Cg1Vg1 + CaVg2

Q2 + CRVR + Cg2Vg2 + CbVg1

 =

 C1 −Cm

−Cm C2


V1

V2

 , (7.11)

where C1 = CL + Cg1 + Cm + Ca and C2 = CR + Cg2 + Cm + Cb. Using the same

parameters as in Fig. 7.2(b) together with Ca = 1.7 aF and Cb=3.7 aF, we can

simulate the modified stability diagram as shown in Fig. 7.9. It is clear that the grid
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Figure 7.8: An improved model for the DQD system, including cross coupling between

dot 1(2) and gate 2(1)

of triple points is now tilted, resembling the experimental data in Fig. 7.7, which

verifies that the model including Ca and Cb is more accurate in describing our DQD

system.

As we increase the bias voltage, the triple points expand into triangles as shown

in Fig. 7.10, where the DQD is biased at V = −0.6 mV. Superimposed on the data

are the approximate boundaries of the bias triangles. With Fig. 7.7 and Fig. 7.10 we

can retrieve the approximate values of the capacitances listed in Table. 7.1. Data in

Fig. 7.7 and Fig. 7.10 are taken in 17 min and 10 min respectively at a rate of 10

points per second, approximately 10 times faster than lock-in measurements. Even

without real-time detection, the rf-SET can be used to replace lock-in measurement

of dot current, greatly reducing the time required for data acquisition.
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Figure 7.10: Bias triangles for (2.0), (1,1) transition at V = −0.6 mV. Superimposed

are the approximate boundaries of the triangles that are used to extract the values

of the capacitances.
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Table 7.1: Subtracted values of capacitances in aF

C1 C2 Cg1 Cg2 Ca Cb Cm

141 104 13 2.8 1.7 3.7 38

7.3.3 Spin blockade and excited state transition in Si/SiGe

DQD

When a positive bias is applied on the DQD, we see signature of spin blockade. In

Fig. 7.11 where V = 0.4 mV, the enhanced triangle region is clearly missing other

than the edges. This agrees with the picture of Pauli spin blockade illustrated in

Fig. 7.4.

In addition, there is another interesting feature in Fig. 7.10. Apart from the pair of

triangles superimposed with the blue lines, there is a less bright but clearly enhanced

region that is slightly offset. This is most likely due to transition through an excited

state in the DQD. In order to understand this qualitatively we modify Eq. 7.8- 7.10

by including the excitation energy ∆1(2) in dot 1(2).

µ1(N1 + 1, N2) + ∆1 = −eV (7.12)

µ2(N1, N2 + 1) + ∆2 = 0 (7.13)

µ1(N1 + 1, N2) + ∆1 = µ2(N1, N2 + 1) + ∆2. (7.14)

In Fig. 7.12 we compare the original bias triangle data to a fit. Fig. 7.12(a) is

identical to Fig. 7.10. Fig. 7.12(b), which has the same scale with Fig. 7.12(a) include

two sets of triangles. The blue ones are the ground state triangles generated with
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Figure 7.11: For V = 0.4 mV the signal in the triangle region is suppressed, indicating

spin blockade.
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Eq. 7.8- 7.10 and the red ones are excited state triangles generated with Eq. 7.12- 7.14,

using ∆1 = 0.4 meV and ∆2 = 0.25 meV. To demonstrate the effect of ∆1 and ∆2

respectively, we further generate Fig. 7.13, in which the green triangles correspond to

∆1 = 0.4 meV, ∆2 = 0 and the magenta triangles correspond to ∆1 = 0, ∆2 = 0.25

meV. It can be clearly seen that ∆1 preserves the lines that define the charge states in

dot 2 while ∆2 preserves the lines that define the charge states in dot 1, in agreement

with our model.

Additional enhanced regions are commonly interpreted as triplet triangles [77, 79,

82] which appear when the dc bias exceeds the singlet-triplet splitting in dot 1. This

feature is especially significant in Si/SiGe QDs [82] and is considered as an evidence

of the long spin relaxation time in Si. However, we conclude that the excited state

triangles we observe are not due to triplet states. The reason is that the singlet and

triplet states in dot 2, i.e. the singlet and triplet states in (1,1) configuration are

nearly degenerate (see Fig. 7.4). Their measured splitting is usually on the order of

micro-electron volt, whereas in our data ∆2 = 0.25 meV. Therefore, the second set of

triangles in our data must correspond to another excited state. The possible candi-

dates are the ordinary orbital states and the valley states unique to Si. One example

with valley states is illustrated in Fig. 7.14, in which the singlet and triplet states are

labeled with S and T, respectively and the two valley states are labeled with o and

e. For negative bias as shown in Fig. 7.14(a), a second channel for electron transition

through the singlet with e valley state can be accessible. The difference between S,e

and S,o in (2,0) corresponds to ∆1 while for (1,1) configuration it corresponds to ∆2.

For positive bias the spin blockade persists, as shown in Fig. 7.14(b).

In fact, calculation shows that when both spin and valley degrees of freedom are
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Figure 7.12: (a) The bias triangle data identical to Fig. 7.10. (b) The simulated
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for the red triangles the excitation energy of ∆1 = 0.4 mV and ∆2=0.25 mV are

included. In (b) the offset is chosen for clarity but the scales are the same as in (a).
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present, spin blockade involves many combinations of spin and valley states [83].

Regardless of the actual excited states involved, ∆1 = 0.4 meV and ∆2 = 0.25 meV

are rather high energies. The fact that these transitions are visible demonstrates that

the energy relaxation times in Si/SiGe DQDs are long.

7.4 Analysis of diode detector output

It is intriguing that Fig. 7.7, 7.10 and 7.11 strongly resemble transport measurements,

even though they report charge sensing measurements. To understand this, we assume

the transitions can be modeled as an RTS between two charge states labelled 0 and
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Figure 7.14: Schematic energy diagram of a DQD system with both spin and valley

degrees of freedom. The valley states are labeled with o and e. The two valley states

can provide two channels for singlet transitions, resulting in two pairs of bias triangles.

1 with power spectral density (PSD)[84, 85]

S(ω) =
4(∆I)2

(τ0 + τ1)[(1/τ0 + 1/τ1)2 + ω2]
(7.15)

where τ0,1 are the mean times spent in each state as in section 6.3.2. The amplitudes

of states 0 and 1 are chosen to be 0 and ∆I respectively. The low-frequency plateau

of S(ω) reaches a maximum when τ0 = τ1, which is when two states are degenerate in

the DQD. We can express the signal entering the detector as v(t) = v0[1+x(t)] cosω0t.

Here, x(t) � 1 is the fractional change in reflected voltage due to the RTS and its

Fourier transform is X(ω). Assuming that the amplitude v0 is also small, we can

use the small-signal approximation [70] and Taylor expand the output current of the

diode detector in powers of v(t) as

i(v(t)) = v0Gd[1 + x(t)] cosω0t+
v2

0

2
G′d[1 + x(t)]2 cos2 ω0t+O(v3

0), (7.16)
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7.4 Analysis of diode detector output

Gd being the dynamic conductance of the diode and G′d its first derivative with respect

to the voltage [70]. Gd and G′d are constants during the measurement. The Fourier

transform of i(t), ignoring high frequency (>15 Hz) terms and second order terms in

x(t), is

ĩ(ω) =
v2

0

2
G′d[πδ(ω) +X(ω)]. (7.17)

Now we can calculate the PSD Si(ω) of the detector current using

S(ω) = lim
T→∞

2|̃i(ω)|2

T
. (7.18)

The delta function associated with a dc background can be ignored. It can be

seen that ĩ(ω) ∝ X(ω) and subsequently Si(ω) ∝ S(ω), where S(ω) is as in Eq. 7.15.

Therefore, the signal is strongest when transitions occur either due to inter-dot tun-

neling within the DQD, or between one of the two dots and the bath.
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Chapter 8

Future direction

We are starting to fabricate QDs in undoped Si/SiGe samples. It has been demon-

strated that by removing the dopants, extremely stable QDs can be formed [9], en-

abling the measurement of T ∗2 [22]. Without dopants, there will also be less dissipation

for the rf resonant circuit, which can enhance the performance of the SET. A new kind

of read-out method, replacing the tank circuit with a high-quality-factor microwave

cavity at f0 ≈ 5 GHz, is being developed. The embedded SET will be operated in the

supercurrent regime as a single Cooper pair transistor (SCPT) to further reduce any

dissipation. The gate-tunable quantum inductance of the SCPT appears in parallel

with the equivalent resonator circuit. Borrowing existing experimental results [86],

the SCPT-induced shift in the resonant frequency is estimated to be

∂ω0

∂ng
≈ 2π × 250MHz/e, (8.1)

where ng is the gate charge ng = CgVg/e. The frequency pull corresponds to multiple

linewidths of the cavity resonance and can significantly improve the charge sensitivity.
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[74] A. K. Hüttel, H. Qin, A. W. Holleitner, R. H. Blick, K. Neumaier, D. Weinmann,

K. Eberl, and J. P. Kotthaus, “Spin blockade in ground-state resonance of a

quantum dot,” europhys. lett. 62, 712 (2003).

[75] L. P. Rokhinson, L. J. Guo, S. Y. Chou, and D. C. Tsui, “Spin transitions in a

small Si quantum dot,” Phys. Rev. B 63, 035321 (2001).

[76] F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson1, L. H. W. van Beveren,

I. T. Vink, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K.

97



BIBLIOGRAPHY

Vandersypen, “Control and detection of singlet-triplet mixing in a random nu-

clear field,” Science 309, 1346 (2005).

[77] A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard,

“Singlet-triplet spin blockade and charge sensing in a few-electron double quan-

tum dot,” Phys. Rev. B 72, 165308 (2005).

[78] H. W. Liu, T. Fujisawa, Y. Ono, H. Inokawa, A. Fujiwara, K. Takashina, and

Y. Hirayama, “Pauli-spin-blockade transport through a silicon double quantum

dot,” Phys. Rev. B 77, 073310 (2008).

[79] N. Shaji, C. B. Simmons, M. Thalakulam, L. J. Klein, H. Qin, H. Luo, D. E.

Savage, M. G. Lagally, A. J. Rimberg, R. Joynt, M. Friesen, R. H. Blick, S. N.

Coppersmith, and M. A. Eriksson, “Spin blockade and lifetime-enhanced trans-

port in a few-electron Si/SiGe double quantum dot,” Nat. Phys. 4, 540 (2008).

[80] C. B. Simmons, T. S. Koh, N. Shaji, M. Thalakulam, L. J. Klein, H. Qin, H. Luo,

D. E. Savage, M. G. Lagally, A. J. Rimberg, R. Joynt, R. Blick, M. Friesen, S. N.

Coppersmith, and M. A. Eriksson, “Pauli spin blockade and lifetime-enhanced

transport in a Si/SiGe double quantum dot,” Phys. Rev. B 82, 245312 (2010).

[81] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, 1976).

[82] C. B. Simmons, T. S. Koh, N. Shaji, M. Thalakulam, L. J. Klein, H. Qin, H. Luo,

D. E. Savage, M. G. Lagally, A. J. Rimberg, R. Joynt, R. Blick, M. Friesen, S. N.

Coppersmith, and M. A. Eriksson, “Pauli spin blockade and lifetime-enhanced

transport in a Si/SiGe double quantum dot,” Phys. Rev. B 82, 245312 (2010).

98



BIBLIOGRAPHY

[83] N. Rohling and G. Burkard, “Universal quantum computing with spin and valley

states,” New Journal of Physics 14, 083008 (2012).

[84] S. Machlup, “Noise in Semiconductors: Spectrum of a Two Parameter Random

Signal,” J. Appl. Phys 25, 341 (1953).

[85] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: A new

perspective on individual defects, interface states and low-frequency (1/f) noise,”

Adv. Phys 38, 367 (1989).
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