A high-level schematic of a Kerr comb-driven silicon photonic link leveraging wavelength division multiplexing.

Integrated photonic high-speed data communication links

Our group is designing and experimentally demonstrating highly energy-efficient silicon photonic links with extreme bandwidth through wavelength division multiplexing (WDM) with on-chip frequency comb sources. [1-3]

References

[1] A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, A. L. Gaeta, and K. Bergman, “Massively scalable Kerr comb-driven silicon photonic link,” Nat. Photonics 17(9), 781–790 (2023).

[2] A. Rizzo, S. Daudlin, A. Novick, A. James, V. Gopal, V. Murthy, Q. Cheng, B. Y. Kim, X. Ji, Y. Okawachi, M. Van Niekerk, V. Deenadayalan, G. Leake, M. Fanto, S. Preble, M. Lipson, A. Gaeta, and K. Bergman, “Petabit-Scale Silicon Photonic Interconnects With Integrated Kerr Frequency Combs,” IEEE J. Sel. Top. Quantum Electron. 29(1), 1–20 (2023).

[3] A. James, A. Novick, A. Rizzo, R. Parsons, K. Jang, M. Hattink, and K. Bergman, “Scaling comb-driven resonator-based DWDM silicon photonic links to multi-Tb/s in the multi-FSR regime,” Optica 10(7), 832 (2023).

A schematic of a visible wavelength photonic integrated circuit addressing trapped ion qubits.

Visible Wavelength Integrated Photonics

Integrated photonics is becoming increasingly important at wavelengths outside of the standard telecommunication windows. We are investigating visible wavelength photonic systems for atomic quantum systems, spectroscopy, and biosensing. [4]

References

[4] C.L. Craft, N.J. Barton, A.C. Klug, K. Scalzi, I. Wildemann, P. Asagodu, J.D. Broz, N.L. Porto, M. Macalik, A. Rizzo, G. Percevault, C.C. Tison, A.M. Smith, M.L. Fanto, J. Schneeloch, E. Sheridan, D. Heberle, A. Brownell, V.S.S. Sundaram, V. Deenadayalan, M. van Niekerk, E. Manfreda-Schulz, G.A. Howland, S.F. Preble, D. Coleman, G. Leake, A. Antohe, T. Vo, N.M. Fahrenkopf, T.H. Stievater, K.-A. Brickman-Soderberg, Z.S. Smith, and D. Hucul, “Low-Crosstalk, Silicon-Fabricated Optical Waveguides for Laser Delivery to Matter Qubits,” arXiv:2406.17607  [quant-ph] (2024).

Image of a heterogeneously integrated photonic-electronic engine for high-bandwidth data transmission with low energy consumption.

Photonic-Electronic Integration

We are exploring dense heterogeneous integration of integrated photonic circuits with CMOS electronics for large-scale electronic-photonic systems in data communications, biosensing, and quantum information processing. [5-7]

References

[5] S. Daudlin, A. Rizzo, S. Lee, D. Khilwani, C. Ou, S. Wang, A. Novick, V. Gopal, M. Cullen, R. Parsons, A. Molnar, and K. Bergman, “3D photonics for ultra-low energy, high bandwidth-density chip data links,” arXiv:2310.01615 [physics.optics] (2023).

[6] S. Daudlin, S. Lee, D. Kilwani, C. Ou, A. Rizzo, S. Wang, M. Cullen, A. Molnar, and K. Bergman, “Ultra-dense 3D integrated 5.3 Tb/s/mm2 80 micro-disk modulator transmitter,” 2023 Optical Fiber Communication Conference (OFC), M3I.1 (2023).

[7] D. Khilwani, S. Lee, C. Ou, S. Daudlin, A. Rizzo, S. Wang, M. Cullen, K. Bergman, and A. Molnar, “3D-Integrated, Low Power, High Bandwidth Density Opto-Electronic Transceiver,” 2024 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5 (2024).

Scanning electron micrograph (SEM) image of a dispersion-engineered silicon nitride waveguide fabricated on a 300 mm silicon wafer.

Nonlinear & Quantum Photonics

We are designing nonlinear photon pair sources and frequency conversion devices in silicon, silicon nitride, and aluminum nitride waveguides. Additionally, we are exploring the integration of thick dispersion-engineered silicon nitride waveguides into foundry processes for frequency comb generation. [1,4,8]

References

[1] A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, A. L. Gaeta, and K. Bergman, “Massively scalable Kerr comb-driven silicon photonic link,” Nat. Photonics 17(9), 781–790 (2023).

[4] C.L. Craft, N.J. Barton, A.C. Klug, K. Scalzi, I. Wildemann, P. Asagodu, J.D. Broz, N.L. Porto, M. Macalik, A. Rizzo, G. Percevault, C.C. Tison, A.M. Smith, M.L. Fanto, J. Schneeloch, E. Sheridan, D. Heberle, A. Brownell, V.S.S. Sundaram, V. Deenadayalan, M. van Niekerk, E. Manfreda-Schulz, G.A. Howland, S.F. Preble, D. Coleman, G. Leake, A. Antohe, T. Vo, N.M. Fahrenkopf, T.H. Stievater, K.-A. Brickman-Soderberg, Z.S. Smith, and D. Hucul, “Low-Crosstalk, Silicon-Fabricated Optical Waveguides for Laser Delivery to Matter Qubits,” arXiv:2406.17607  [quant-ph] (2024).

[8] E. Kim, L. Carpenter, A.M. Smith, C.C. Tison, D. Coleman, G. Leake, M.L. Fanto, and A. Rizzo, “Ultra-Low Loss Dispersion-Engineered Silicon Nitride Waveguides on 300 mm Wafers,” 2025 SPIE Photonics West (2025).

Schematic and computer rendering of a wavelength-diverse chip-scale photonic neural network.

Photonic Neural Networks

In addition to photonic interconnects for data communication, we are also exploring regimes of photonic computation such as photonic neural networks and neuromorphic photonics. Photonic computation has the potential to increase bandwidth, reduce energy consumption, and decrease latency for particular tasks including neural network inference. [9-10]

References

[9] M. Van Niekerk, A. Rizzo, H. Rubio, G. Leake, D. Coleman, C. Tison, M. Fanto, K. Bergman, and S. Preble, “Massively scalable wavelength diverse integrated photonic linear neuron,” Neuromorphic Comput. Eng. 2(3), 034012 (2022).

[10] M. van Niekerk, A. Rizzo, H.R. Rivera, G. Leake, D. Coleman, C. Tison, M. Fanto, K. Bergman, and S. Preble, “Learning Bit-Gates With A Resonant Photonic Linear Neuron,” 2022 Frontiers in Optics + Laser Science (FIO, LS), JTu4A.54 (2022).

Collage of various images showing different aspects of novel material development for foundry integrated photonics processes.

Novel Photonic Materials

We are working closely with AIM Photonics to introduce new materials and processes into their existing stack to achieve novel optical, thermo-optical and electro-optical functionalities. In particular, we are investigating polycrystalline aluminum nitride for Pockels modulation, amorphous aluminum oxide for UV photonics, and thermal undercut etches for enhanced isolation and energy efficiency. [11-12]

References

[11] A. Rizzo, E. Thornton, T. Vo, L.G. Carpenter, S. Kar, G. Leake, A.M. Smith, C. Tison, D. Coleman, S. Preble, and M. Fanto, “Low-Loss Aluminum Nitride Waveguides in a 300 mm CMOS Foundry Process” 2024 Conference on Lasers and Electro-Optics (CLEO), STu4E.3 (2024).

[12] A. Rizzo, V. Deenadayalan, M. van Niekerk, G. Leake, C. Tison, A. Novick, D. Coleman, K, Bergman, S, Preble, and M. Fanto, “Ultra-efficient foundry-fabricated resonant modulators with thermal undercut,” 2023 Conference on Lasers and Electro-Optics (CLEO), SF2K.6 (2023).

Collaborations

Columbia University Engineering Logo

Prof. Keren Bergman, Prof. Michal Lipson, Prof. Alexander Gaeta

Air Force Research Laboratory Logo

Dr. Michael Fanto, Dr. Matthew Smith, Dr. Christopher Tison, Dr. David Hucul, Dr. Zachary Smith

Funding

Toyota Research Institute of North America Logo

Toyota Research Institute of North America (TRINA)

United States Army Research Laboratory Logo

United States Army Research Laboratory (DEVCOM ARL)

Dartmouth Engineering logo

Thayer School of Engineering at Dartmouth